Influence of temperature on the composition and polymerization of gluten proteins during grain filling in spring wheat (Triticum aestivum L.)

2015 ◽  
Vol 65 ◽  
pp. 1-8 ◽  
Author(s):  
Shiori Koga ◽  
Ulrike Böcker ◽  
Anette Moldestad ◽  
Paola Tosi ◽  
Peter R. Shewry ◽  
...  
1991 ◽  
Vol 71 (4) ◽  
pp. 1081-1088 ◽  
Author(s):  
Patrick M. McMullan ◽  
John D. Nalewaja

Research was conducted to determine the influence of temperature on triallate absorption and metabolism in triallate-tolerant durum wheat (Triticum durum L. 'Monroe'), moderately tolerant Hard Red Spring (HRS) wheat (Triticum aestivum L. 'Coteau'), and susceptible HRS wheat, Alex. Uptake of 14C-triallate by the shoot was greater at 24 than at 8 °C by all species. Triallate uptake as influenced by soil temperature is a factor affecting triallate phytotoxicity to wheat. However, Monroe shoot meristematic tissue contained more 14C-label than Alex or Coteau, indicating that 14C-label content in the meristematic tissue was not related to triallate tolerance. Further, the coleoptile tissue of Monroe contained less 14C-label than Alex or Coteau. The coleoptile tissue did not prevent 14C-label entry into shoot tissue. Coleoptile tissue did not seem to be a factor influencing triallate tolerance. 14C-triallate concentration in the shoot related to triallate tolerance at both 8 and 24 °C. Triallate metabolism was apparently involved in differential tolerance among cultivars as the more tolerant Monroe and Coteau had more 14C-metabolites than susceptible Alex. Key words: Wheat, triallate, herbicide, temperature, absorption, metabolism


1994 ◽  
Vol 74 (4) ◽  
pp. 681-686 ◽  
Author(s):  
S. D. Duguid ◽  
A. L. Brûlé-Babel

Final grain dry weight, a component of yield in spring wheat, is determined by the rate and duration of grain filling. The objective of this study was to compare grain dry weight and rate and duration of grain filling amongst five spring wheat genotypes (Triticum aestivum L.) that differed in time to maturity. Glenlea, Katepwa, PT516, Roblin, and Wildcat were sown in replicated trials on four seeding dates in 1988 and 1989 at Winnipeg, Manitoba. Mean grain dry weight was measured at various intervals from anthesis to maturity. A logistic equation was used to characterize grain filling and estimate final grain dry weight, and the duration and maximum rate of grain filling. Stepwise multivariate analysis indicated that final grain dry weight was the most important variable characterizing the grain filling curves, followed by duration and then maximum rate of grain filling. The highest grain dry weights were produced by Glenlea (40.4 mg) and Wildcat (36.9 mg). Roblin (34.9 mg) was intermediate in grain dry weight while Katepwa (32.4 mg) and PT516 (30.3 mg) produced the smallest grains. Genotypes with the highest grain dry weights had shorter durations and higher maximum rates of grain filling. Key words:Triticum aestivum L., grain filling, duration, rate, phenological development, yield


2007 ◽  
Vol 50 (4) ◽  
pp. 504-507 ◽  
Author(s):  
Kamaluddin ◽  
Rishi Muni Singh ◽  
Malik Zainul Abdin ◽  
Mather Ali Khan ◽  
Tanweer Alam ◽  
...  

1983 ◽  
Vol 63 (1) ◽  
pp. 73-90 ◽  
Author(s):  
C. A. CAMPBELL ◽  
H. R. DAVIDSON ◽  
T. N. McCAIG

Manitou spring wheat (Triticum aestivum L.) was grown at combinations of three different day/night temperatures (27/12 °C, 22/12 °C and 17/12 °C), three levels of fertilizer N (58, 116 and 174 kg N/ha), and three moisture stresses (nominally −0.03, −1.5 and −4.0 MPa) applied for four durations (viz., no stress throughout, stress from (i) four-tiller (Tg), (ii) boot (Bt), or (iii) flowering (Fl) stages to harvest (Hvst)). Plant and soil samples were analyzed at eight growth stages. Plants grown at 22/12 °C or 17/12 °C and given 116 or 174 kg N/ha lost some N between heading and flowering. Plant N content (dry weight × % N) was depressed by moisture stress in proportion to the duration of the stress even though N concentration was increased. Plant N content was not greatly affected by temperature due to the compensating effects of temperature on dry matter and N concentration. N content of heads was depressed most by moisture stress applied from the Bt stage. Between Fl and Hvst the roots, leaves and stems lost an average 27, 39 and 63% of their N content, respectively. Stems could have contributed a maximum of about 30%, roots 14%, leaves 10% and chaff 7% of the grain N content at Hvst; thus, almost 40% of the grain’s N was taken up during grain filling. An average 75% of the aboveground plant N was located in the grain. At 27/12 °C nonstructural carbohydrate (NSC) concentration in stems reached a maximum at Fl compared to dough stage at 22/12 °C, but it decreased rapidly thereafter. In contrast to N concentration, NSC concentration in stems was lowest at 27/12 °C; also, moisture stress from Bt or Tg stages decreased NSC concentration. Like N content, NSC content was reduced in proportion to the duration of moisture stress. High temperature, N fertilizer, and moisture stress from Tg or Bt stages (conditions favoring high grain protein) increased the proportion of the vegetative organs’ weight loss, between Fl and Hvst, that was N-linked. The amount of NSC-associated dry matter lost from stems during grain filling was generally greater for late or low moisture stressed plants, for plants grown under cooler conditions, and for plants grown at higher N rates (conditions favoring greater grain yields). Of the moisture treatments, stress applied from Fl increased NSC-associated dry matter lost from stems the most, probably suggesting that assimilate translocation was used by the plant to compensate for reduced flag-leaf-produced photosynthate. Respiration losses associated with NSC translocation from stems to heads was greater at 22/12° than at 17/12 °C; there was little NSC translocation apparent at T27/12 °C.Key words: Plant nitrogen, soluble sugars, nitrogen effect, temperature effect, moisture stress effect, spring wheat (Triticum aestivum L.)


2019 ◽  
Vol 132 (11) ◽  
pp. 3023-3033 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Richard D. Cuthbert ◽  
Ron E. Knox ◽  
Arti Singh ◽  
Heather L. Campbell ◽  
...  

1991 ◽  
Vol 71 (2) ◽  
pp. 519-522 ◽  
Author(s):  
R. M. DePauw ◽  
K. R. Preston ◽  
T. F. Townley-Smith ◽  
E. A. Hurd ◽  
G. E. McCrystal ◽  
...  

Biggar red spring wheat (Triticum aestivum L.) combines high grain yield potential with semidwarf stature and wide adaptation. Biggar has improved end-use suitability relative to HY320 such as harder kernels, better flour milling properties, greater water absorption, and stronger gluten properties. It received registration No. 3089 and is eligible for grades of Canada Prairie Spring (red). Key words: Triticum aestivum, wheat (spring), high yield, cultivar description


Sign in / Sign up

Export Citation Format

Share Document