scholarly journals Experiments on the global buckling and collapse of built-up cold-formed steel columns

2018 ◽  
Vol 144 ◽  
pp. 65-80 ◽  
Author(s):  
David C. Fratamico ◽  
Shahabeddin Torabian ◽  
Xi Zhao ◽  
Kim J.R. Rasmussen ◽  
Benjamin W. Schafer
2009 ◽  
Vol 1 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Luís C. Prola ◽  
Igor Pierin

Most cold-formed steel columns display open and rather thin-walled cross-sections which mean that their structural behaviour is strongly affected by local and global buckling. Th e local mode, that occurs for shorter profi les, is characterized by (i) the local plate mode (LPM) characterized by the simultaneous flexural buckling of the web and fl anges and (ii) by the distortional mode (DM) characterized by the displacements of flange-stiff ener edges (that remain plane). The global mode occurring for long profi les is characterized by (i) the fl exural mode (FM) characterized by the translation of the whole section in the direction of the major principal axis and (ii) by the fl exural-torsional mode (FTM) characterized by the simultaneous translation and rotation of the whole section. Th e possibility of using the results of linear stability analysis in the national codes of thin-walled cold-formed steel structural elements (for instance, European and Brazilian Codes) arises, i.e. local and global buckling instability modes and corresponding bifurcation stresses determining the ultimate strength of members. Two powerful numerical methods are chosen to perform a linear stability analysis of a cold-formed steel structural member: (i) the Finite Strip Method, (i1) the Semi-Analytical Finite Strip Method (trigonometric functions are used in the approximation of displacement) used for simply supported boundary conditions, (i2) the Spline Finite Strip Method (‘spline’ functions are used in the approximation of displacement) used other boundary conditions and (ii) the Finite Element Method. The linear local and global stability results of for Z, C and rack cold-formed columns are used to obtain ultimate strength through the procedures adopted in the Eurocode 3, Part 1.3 and in the Brazilian Code (NBR 14.762/2001). The obtained numerical estimates by specifi cations are compared with experimental results available in literature.


Author(s):  
Akshay Mangal Mahar ◽  
S. Arul Jayachandran

This paper presents a computational methodology to compute the critical buckling stress of built-up cold-formed steel columns joined with discrete fasteners. The fasteners are modeled as three-dimensional beam elements, and their effect is integrated into the spline finite strip framework, evolving the compound strip methodology. Although this technique has been presented in the literature, this paper presents yet another robust framework for the buckling load evaluation of compound cold-formed steel columns with arbitrarily located fasteners. The proposed framework is applied to study the effect of fasteners on the formation of local, distortional, and global buckling modes of built-up section and a comparison is drawn with the buckling behavior of a single section. In this study, the proposed formulations are also used to get insights into the stability behavior of single-span and multi-span compound cold-formed steel columns in the presence of (i) fasteners with varied spacings with respect to span and (ii) the presence of the additional restraining system such as wall panels. For different buckling modes, a significant increment in buckling stress for a built-up section from a single section is observed when the fastener spacing is kept less than the critical buckling half-wavelength of the respective buckling modes. The study on the effect of wall panels shows that in comparison to unsheathed wall studs, the sheathed wall studs that produce additional constraints lead to the elimination of the global buckling deformations. The proposed formulations are simple, yet rigorous and have been validated using finite element-based numerical results.


Structures ◽  
2015 ◽  
Vol 4 ◽  
pp. 38-57 ◽  
Author(s):  
André Dias Martins ◽  
Dinar Camotim ◽  
Pedro Borges Dinis ◽  
Ben Young

Fire Research ◽  
2016 ◽  
Author(s):  
Hélder D. Craveiro ◽  
João Paulo C. Rodrigues ◽  
Luís M. Laím

Cold-formed steel (CFS) profiles with a wide range of cross-section shapes are commonly used in building construction industry. Nowadays several cross-sections can be built using the available standard single sections (C, U, Σ, etc.), namely open built-up and closed built-up cross-sections. This paper reports an extensive experimental investigation on the behavior of single and built-up cold-formed steel columns at both ambient and simulated fire conditions considering the effect of restraint to thermal elongation. The buckling behavior, ultimate loads and failure modes, of different types of CFS columns at both ambient and simulated fire conditions with restraint to thermal elongation, are presented and compared. Regarding the buckling tests at ambient temperature it was observed that the use of built-up cross-sections ensures significantly higher values of buckling loads. Especially for the built-up cross-sections the failure modes were characterized by the interaction of individual buckling modes, namely flexural about the minor axis, distortional and local buckling. Regarding the fire tests, it is clear that the same levels of restraint used in the experimental investigation induce different rates in the generated restraining forces due to thermal elongation of the columns. Another conclusion that can be drawn from the results is that by increasing the level of restraint to thermal elongation the failure of the columns is controlled by the generated restraining forces, whereas for lower levels of restraint the temperature plays a more important role. Hence, higher levels of imposed restraint to thermal elongation will lead to higher values of generated restraining forces and eventually to lower values of critical temperature and time.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


2021 ◽  
Vol 169 ◽  
pp. 108362
Author(s):  
Antônio Albuquerque Bicelli ◽  
Alexandre Landesmann ◽  
Dinar Camotim ◽  
Pedro Borges Dinis

Sign in / Sign up

Export Citation Format

Share Document