Out-of-plane buckling strength of free standing singly symmetric hollow pinned circular arches

2021 ◽  
Vol 186 ◽  
pp. 106914
Author(s):  
Salih Can Rakici ◽  
Fatmir Menkulasi
2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Enrico Ferri ◽  
V. S. Deshpande ◽  
A. G. Evans

Dynamic out-of-plane compressive testing was used to characterize the dynamic strength of stainless steel prismatic cores with representative double layer topology to be employed in sandwich panels for blast protection. Laboratory-scaled samples of the representative core unit cell were manufactured (relative density of 5.4%) and tested at constant axial impact velocities (ranging from quasi-static to 140 ms−1). The dynamic strength was evaluated by measuring the stresses transmitted to a direct impact Hopkinson bar. Two-dimensional, plane strain, finite element calculations (with a stationary back face) were used to replicate the experimental results upon incorporating imperfections calibrated using the observed dynamic buckling modes. To infer the response of cores when included in a sandwich plate subject to blast loading, the finite element model was modified to an unsupported (free-standing) back face boundary condition. The transmitted stress is found to be modulated by the momentum acquired by the back face mass and, as the mass becomes larger, the core strength approaches that measured and simulated for stationary conditions. This finding justifies the use of a simple dynamic compression test for calibration of the dynamic strength of the core. An analytical model that accounts for the shock effects in a homogenized core and embodies a simple dual-level dynamic strength is presented and shown to capture the experimental observations and simulated results with acceptable fidelity. This model provides the basis for a constitutive model that can be used to understand the response of sandwich plates subject to impulsive loads.


2019 ◽  
Vol 116 (45) ◽  
pp. 22464-22470 ◽  
Author(s):  
Anis Senoussi ◽  
Shunnichi Kashida ◽  
Raphael Voituriez ◽  
Jean-Christophe Galas ◽  
Ananyo Maitra ◽  
...  

Active matter locally converts chemical energy into mechanical work and, for this reason, it provides new mechanisms of pattern formation. In particular, active nematic fluids made of protein motors and filaments are far-from-equilibrium systems that may exhibit spontaneous motion, leading to actively driven spatiotemporally chaotic states in 2 and 3 dimensions and coherent flows in 3 dimensions (3D). Although these dynamic flows reveal a characteristic length scale resulting from the interplay between active forcing and passive restoring forces, the observation of static and large-scale spatial patterns in active nematic fluids has remained elusive. In this work, we demonstrate that a 3D solution of kinesin motors and microtubule filaments spontaneously forms a 2D free-standing nematic active sheet that actively buckles out of plane into a centimeter-sized periodic corrugated sheet that is stable for several days at low activity. Importantly, the nematic orientational field does not display topological defects in the corrugated state and the wavelength and stability of the corrugations are controlled by the motor concentration, in agreement with a hydrodynamic theory. At higher activities these patterns are transient and chaotic flows are observed at longer times. Our results underline the importance of both passive and active forces in shaping active matter and demonstrate that a spontaneously flowing active fluid can be sculpted into a static material through an active mechanism.


2018 ◽  
Vol 83 (744) ◽  
pp. 309-319
Author(s):  
Hayato ASADA ◽  
Taichiro OKAZAKI ◽  
Tsuyoshi TANAKA ◽  
Saya NAKAI ◽  
Shogo HASHIOKA

2015 ◽  
Vol 98 ◽  
pp. 118-127 ◽  
Author(s):  
Yan-Lin Guo ◽  
Si-Yuan Zhao ◽  
Yong-Lin Pi ◽  
Mark Andrew Bradford ◽  
Chao Dou

2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Yin Huang ◽  
Zhuangzhuang Mu ◽  
Peng Feng ◽  
Jianghong Yuan

Inorganic stretchable electronics based on the island-bridge layout have attracted great attention in recent years due to their excellent electrical performance under the extreme condition of large deformations. During the mechanics design of interconnects in such devices, the major task is not only to maximize the elastic stretchability of device but also to smoothen the whole deformation process of interconnects. In this work, a novel design strategy is proposed for free-standing fractal serpentine interconnects to improve their elastic performance comprehensively without reducing the areal coverage of functional/active components of device. By modifying the classical design slightly, the new strategy can achieve a larger elastic stretchability, a smaller maximum out-of-plane displacement, and most strikingly, a smoother post-buckling deformation. This study will provide helpful guidance to the mechanics design of stretchable electronics with free-standing interconnects.


Sign in / Sign up

Export Citation Format

Share Document