Detecting human cytomegalovirus drug resistant mutations and monitoring the emergence of resistant strains using real-time PCR

2014 ◽  
Vol 61 (2) ◽  
pp. 270-274 ◽  
Author(s):  
Pavlina Volfova ◽  
Martina Lengerova ◽  
Jana Lochmanova ◽  
Dana Dvorakova ◽  
Dita Ricna ◽  
...  
Author(s):  
Cláudia Fernandes ◽  
Augusta Marques ◽  
Maria de Jesus Chasqueira ◽  
Mónica Cró Braz ◽  
Ana Rute Ferreira ◽  
...  

Abstract Human cytomegalovirus (HCMV) is the leading congenital infection agent in the world. The importance of screening this infection has been debated, as 10–15% of the asymptomatic newborns with HCMV at birth will present late sequelae. The aim of this study was to test the feasibility of using saliva pools from newborns in a screening program for congenital HCMV infection, in two Portuguese hospitals. The screening was based on the use of pools of 10 saliva samples for detection of viral DNA by real-time PCR. Whenever there was a positive pool, the samples were tested individually, and for each positive sample the result was confirmed with a urine sample collected in the first 2 weeks of life. The study involved 1492 newborns. One hundred and fifty pools were screened, with 14 positive results in saliva, but only 10 were confirmed in urine samples, giving a prevalence of congenital HCMV infection in both hospitals of 0.67% (CI95% 0.36 to 1.23%). Conclusion: The overall prevalence of congenital HCMV infection in both hospitals was 0.67%. The use of saliva pools proved to be effective for the screening of this congenital infection, allowing timely screening and confirmation in a large population, with associated cost reduction. What is Known:• Newborn screening for HCMV is desirable.• Saliva is a good and practical sample. What is New:• The feasibility of using saliva pools for a large-scale screening.• The cost reduction of this strategy.


1999 ◽  
Vol 45 (11) ◽  
pp. 1932-1937 ◽  
Author(s):  
Andreas Nitsche ◽  
Nina Steuer ◽  
Christian Andreas Schmidt ◽  
Olfert Landt ◽  
Wolfgang Siegert

Abstract Background: The aim of this study was to compare the ABI PRISM 7700 Sequence Detection System and the LightCycler to develop a quantitative real-time PCR assay for the detection of human cytomegalovirus (HCMV) DNA suitable for routine hospital application. Methods: We used one exonuclease probe and five different hybridization probe sets as sequence-specific fluorescence detection formats. For the exonuclease assay and two hybridization probe sets, reproducibility and the detection limit were determined. To keep the total assay time to a minimum, we gradually shortened individual reaction steps on both instruments. Results: The exonuclease assay can be interchangeably performed on the 7700 and the LightCycler. No change of reaction conditions is required, except for the addition of bovine serum albumin to the LightCycler reaction. The shortest possible total assay time is 80 min for the ABI PRISM 7700 Sequence Detection System and 20 min for the LightCycler. When the LightCycler is used, the exonuclease probe can be replaced by a set of hybridization probes. All assays presented here detected HCMV DNA in a linear range from 101 to 107 HCMV genome equivalents/assay (r >0.995) with low intraassay (<5%) and interassay (<10%) variation. Conclusions: The ABI PRISM 7700 Sequence Detection System as well as the LightCycler are useful instruments for rapid and precise online PCR detection. Moreover, the two principles of fluorescence signal production allow HCMV quantification with the same accuracy.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Qian Wang ◽  
Dimitrios P. Kontoyiannis ◽  
Ruoyu Li ◽  
Wei Chen ◽  
Dingfang Bu ◽  
...  

ABSTRACT Invasive aspergillosis caused by triazole-resistant strains of Aspergillus fumigatus is a growing public health concern, as is the occurrence of mixed infections with triazole-resistant and -susceptible A. fumigatus strains. Therefore, it is crucial to develop robust methods to identify triazole-resistant strains of A. fumigatus, even in mixtures of triazole-resistant and -susceptible strains of A. fumigatus. In this work, we developed a robust, highly selective, and broad-range allele-specific TaqMan real-time PCR platform consisting of 7 simultaneous assays that detect TR34 (a 34-bp tandem repeat in the promoter region), TR46, G54W (a change of G to W at position 54), G54R, L98H, Y121F, and M220I mutations in the cyp51A gene of A. fumigatus. The method is based on the widely used TaqMan real-time PCR technology and combines allele-specific PCR with a blocking reagent (minor groove binder [MGB] oligonucleotide blocker) to suppress amplification of the wild-type cyp51A alleles. We used this method to detect triazole-resistant clinical strains of A. fumigatus with a variety of cyp51A gene mutations, as well as the triazole-resistant strains in mixtures of triazole-resistant and -susceptible strains of A. fumigatus. The method had high efficiency and sensitivity (300 fg/well, corresponding to about 100 CFU per reaction mixture volume). It could promptly detect triazole resistance in a panel of 30 clinical strains of A. fumigatus within about 6 h. It could also detect cyp51A-associated resistance alleles, even in mixtures containing only 1% triazole-resistant A. fumigatus strains. These results suggest that this method is robustly able to detect cyp51A-associated resistance alleles even in mixtures of triazole-resistant and -susceptible strains of A. fumigatus and that it should have important clinical applications.


BioTechniques ◽  
2016 ◽  
Vol 61 (4) ◽  
Author(s):  
María P. Torres ◽  
Laura R. Porter ◽  
Stacey Morrow ◽  
Christopher M. Connelly ◽  
Nancy D. Hanson

2003 ◽  
Vol 41 (8) ◽  
pp. 3840-3845 ◽  
Author(s):  
C. Mengelle ◽  
K. Sandres-Saune ◽  
C. Pasquier ◽  
L. Rostaing ◽  
J.-M. Mansuy ◽  
...  

2011 ◽  
Vol 49 (9) ◽  
pp. 3132-3138 ◽  
Author(s):  
Tao Luo ◽  
Lili Jiang ◽  
Weiming Sun ◽  
G. Fu ◽  
Jian Mei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document