ANALYSIS OF THE INTERACTION BETWEEN STEM CELLS AND POLYLACTIC ACID (PLA) SCAFFOLDS FOR APPLICATIONS IN TISSUE ENGINEERING

Cytotherapy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 3-4
Author(s):  
G Biagini ◽  
BH Marcon ◽  
T Pereira ◽  
LF Berti ◽  
AC Senegaglia ◽  
...  
2021 ◽  
Author(s):  
Xiang Zhang ◽  
Jialei Chen ◽  
Hongren Wang ◽  
Xin Duan ◽  
Feng Gao

Abstract BACKGROUND: Bone defects still pose various challenges in osteology. As one of the treatment options for bone defects, bone tissue engineering requires biomaterials with good biocompatibility and seed cells with good differentiation capacity. This study aimed to fabricate a 3D-printed polylactic acid and hydroxyapatite (PLA/HA) composite scaffold with urine-derived stem cells (USCs) to study its therapeutic effect in a model of skull defect in rats.METHODS: USCs, isolated and extracted from the urine of healthy adult males, were inoculated onto a 3D-printed PLA/HA composite scaffold and a PLA scaffold. Skull defect model rats were randomly divided into three groups (control, PLA, and PLA/HA). Twelve weeks after implanting scaffolds containing USCs into rats with a skull defect, the therapeutic efficacy was evaluated by real-time PCR, micro-CT, histology, and immunohistochemistry.RESULTS: The 3D-printed PLA/HA composite scaffold had good mechanical properties and porosity. The adhesion and proliferation of USCs on scaffolds also demonstrated excellent biocompatibility. PLA and PLA/HA containing USCs promoted bone regeneration in the defect area, supported by the general observation and CT images at 12 weeks after treatment, with coverage of 74.6%±1.9% and 96.7%±1.6%, respectively. Immunohistochemical staining showed a progressive process of new bone formation on PLA/HA scaffolds containing USCs at the defect site compared to that in PLA and control groups.CONCLUSION: The 3D-printed PLA/HA composite scaffold with USCs was successfully applied to the skull defect in rats. Under the linkage of the scaffold, the proliferation, differentiation, and osteogenesis expression of USCs were promoted near the bone defect area. These findings demonstrated broad application prospects of PLA/HA scaffolds with USCs in bone tissue engineering.


2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


2020 ◽  
Vol 15 (3) ◽  
pp. 187-201 ◽  
Author(s):  
Sunil K. Dubey ◽  
Amit Alexander ◽  
Munnangi Sivaram ◽  
Mukta Agrawal ◽  
Gautam Singhvi ◽  
...  

Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.


2014 ◽  
Vol 9 (3) ◽  
pp. 280-289 ◽  
Author(s):  
Lin Zhang ◽  
Ge Feng ◽  
Xing Wei ◽  
Lan Huang ◽  
Aishu Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document