Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies

2016 ◽  
Vol 36 ◽  
pp. 120-129 ◽  
Author(s):  
Zerrin Sezgin-bayindir ◽  
Ahmet Doğan Ergin ◽  
Mahmut Parmaksiz ◽  
Ayse Eser Elcin ◽  
Yasar Murat Elcin ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1906
Author(s):  
Mona Atabakhshi-Kashi ◽  
Mónica Carril ◽  
Hossein Mahdavi ◽  
Wolfgang J. Parak ◽  
Carolina Carrillo-Carrion ◽  
...  

Nanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important. Herein, we performed the effective conjugation of antibodies onto a fluorescent NP assembly, which consisted of fluorinated Quantum Dots (QD) self-assembled through fluorine–fluorine hydrophobic interactions. Cellular uptake studies by confocal microscopy and flow cytometry revealed that the NP assembly underwent the same uptake procedure as individual NPs; that is, the antibodies retained their targeting ability once attached to the nanoassembly, and the NP assembly preserved its intrinsic properties (i.e., fluorescence in the case of QD nanoassembly).


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Feipeng Yang ◽  
Maleen Cabe ◽  
Hope A. Nowak ◽  
Kelly A. Langert

Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.


2010 ◽  
Vol 11 (4) ◽  
pp. 1675-1683 ◽  
Author(s):  
Chidambaram Soundrapandian ◽  
Someswar Datta ◽  
Biswanath Kundu ◽  
Debabrata Basu ◽  
Biswanath Sa

Sign in / Sign up

Export Citation Format

Share Document