The effect of various model parameters on enamel caries lesions in a dose–response model in situ

2015 ◽  
Vol 43 (10) ◽  
pp. 1261-1267 ◽  
Author(s):  
H. Meyer-Lueckel ◽  
R.J. Wierichs ◽  
B. Gninka ◽  
P. Heldmann ◽  
C.E. Dörfer ◽  
...  
Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 253 ◽  
Author(s):  
Esfahanian ◽  
Adhikari ◽  
Dolan ◽  
Mitchell

. In order to determine the relationship between an exposure dose of Staphylococcus aureus (S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay kinetics is very important. Models are essential tools for understanding and predicting bacterial kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters, which can be addressed using an inverse problem approach. The objective of this study is to construct a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S. aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses, including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis, and parameter correlation analysis were conducted to estimate the parameters and to describe the model uncertainty. Based on these analyses, the proposed model parameters were estimated with high accuracy. The model was then used to develop a new dose-response model for S. aureus using the exponential dose–response model. The new S. aureus model has an optimized k parameter equivalent to 8.05 × 10−8 with 95th percentile confidence intervals between 6.46 × 10−8 and 1.00 × 10−7.


2016 ◽  
Vol 50 ◽  
pp. 74-78 ◽  
Author(s):  
C.A.B. Cardoso ◽  
L.P.S. Cassiano ◽  
E.N. Costa ◽  
C.M. Souza-e-Silva ◽  
A.C. Magalhães ◽  
...  
Keyword(s):  

2018 ◽  
Vol 52 (1-2) ◽  
pp. 129-138 ◽  
Author(s):  
Jonathan E. Creeth ◽  
Ritu Karwal ◽  
Anderson T. Hara ◽  
Domenick T. Zero

This study aimed to determine the effect of zinc ions and F concentration in a dentifrice on remineralization of early caries lesions in situ and on resistance to subsequent demineralization. This was a single-center, 6-period, 6-product, blinded (examiner, subject, analyst), randomized (n = 62), crossover study. Products (all NaF) were: 0, 250, 1,150 and 1,426 ppm F (dose-response controls), “Zn-A” (0.3% ZnCl2, 1,426 ppm F), and “Zn-B” (as Zn-A, with high-foaming surfactants) in a conventional silica base. Subjects wore palatal appliances holding partially demineralized bovine enamel specimens. They brushed their teeth with 1.5 g test dentifrice (25 s), then swished the slurry ensuring even exposure of specimens (95 s), expectorated, and rinsed (15 mL water, 10 s). After 4 h intraoral remineralization, specimens were removed and acid-challenged in vitro. Surface microhardness (SMH), measured pre-experimental, post-initial acid exposure, post-remineralization, and post-second acid exposure, was used to calculate recovery (SMHR), net acid resistance (NAR), and a new, specifically demineralization-focused calculation, “comparative acid resistance” (CAR). Enamel fluoride uptake (EFU) was also measured. For the F dose-response controls, all measures showed significant relationships with dentifrice F concentration (p < 0.0001). The presence of zinc counteracted the ability of F to promote remineralization in this model. Compared to the 1,426 ppm F control, the zinc formulations gave reduced SMHR, EFU, and NAR (all p < 0.0001); however, they showed evidence of increased CAR (Zn-A: p = 0.0040; Zn-B: p = 0.0846). Products were generally well tolerated. In this study, increasing dentifrice F concentration progressively increased in situ remineralization and demineralization resistance of early caries enamel lesions. Zinc ions reduced remineralization but could increase demineralization resistance.


2014 ◽  
Vol 49 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Hendrik Meyer-Lueckel ◽  
Richard J. Wierichs ◽  
Timo Schellwien ◽  
Sebastian Paris

The aim of this double-blind, randomized, cross-over in situ study was to compare the remineralizing effects induced by the application of casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP)-containing cream (without fluoride) after the use of fluoride toothpaste with the prolonged use of fluoride toothpaste on enamel caries lesions in situ. During each of three experimental legs of 4 weeks, 13 participants wore intra-oral mandibular appliances with 8 pre-demineralized bovine enamel specimens in the vestibular flanges mimicking either ‘easily cleanable' or ‘proximal' surfaces (n = 312). The three randomly allocated treatments were as follows: (1) application of CPP-ACP-containing cream (GC Tooth Mouse, non-fluoride) after the use of fluoride toothpaste (1,400 ppm NaF; TM), (2) prolonged application of fluoride toothpaste (1,400 ppm NaF; positive control, PC) and (3) prolonged application of fluoride-free toothpaste (negative control, NC). Additionally, one of each of the two flanges was brushed twice daily with the respective toothpaste. The differences in integrated mineral loss as assessed by transversal microradiography were calculated between values before and after the in situ period. Changes in mineral loss were analysed for those pairs of subgroups differing in only one of the three factors (intervention, brushing and position). The PC treatment induced a significantly higher mineral gain compared with the TM and NC treatments. No significant differences between TM and NC for both positions were observed. In conclusion, the additional use of a CPP-ACP-containing cream seems to be less efficacious in remineralizing caries lesions than the prolonged application of fluoride toothpaste. © 2014 S. Karger AG, Basel


2016 ◽  
Vol 50 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Diego Figueiredo Nóbrega ◽  
Constanza Estefany Fernández ◽  
Altair Antoninha Del Bel Cury ◽  
Livia Maria Andaló Tenuta ◽  
Jaime Aparecido Cury

The clinical relevance of the frequency of fluoride dentifrice (FD) use on enamel caries is based on evidence. However, the relative effect of FD on reduction of demineralization or enhancement of remineralization is unknown and the effect of frequency on root dentine caries has not been explored. The aim of this double-blind, crossover, in situ study, which was conducted in 4 phases of 14 days each, was to evaluate the relationship between the frequency of FD use and enamel and root dentine de- and remineralization. Eighteen volunteers wore palatal appliances containing enamel and root dentine slabs, either sound or carious. Biofilm accumulation on the slab surface was allowed, and 20% sucrose solution was dripped 3 or 8 times per day on the carious and sound slabs, respectively. Volunteers used FD (1,100 μg F/g) in the frequencies 0 (fluoride-placebo dentifrice), 1, 2 and 3 times per day. The demineralization and remineralization that occurred in sound or carious slabs was estimated by the percentage of surface hardness loss (%SHL) or recovery (%SHR). Loosely (CaF2) and firmly (FAp) bound fluoride concentrations were also determined. The relationship between the variables was analyzed by linear regression. The %SHL, CaF2 and FAp concentrations were a function of the frequency of FD use for enamel and dentine, but the %SHR was a function of the frequency of FD use only for enamel (p < 0.05). The results suggest that demineralization in enamel and root dentine is reduced in proportion to the frequency of FD use, but for remineralization the effect of the frequency of FD use was relevant only to enamel.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Irina Kapitanova ◽  
Sharmi Biswas ◽  
Sabrina Divekar ◽  
Eric J. Kemmerer ◽  
Robert A. Rostock ◽  
...  

Abstract Background Brachial plexopathy is a potentially serious complication from stereotactic body radiation therapy (SBRT) that has not been widely studied. Therefore, we compared datasets from two different institutions and generated a brachial plexus dose–response model, to quantify what dose constraints would be needed to minimize the effect on normal tissue while still enabling potent therapy for the tumor. Methods Two published SBRT datasets were pooled and modeled from patients at Indiana University and the Richard L. Roudebush Veterans Administration Medical Center from 1998 to 2007, as well as the Karolinska Institute from 2008 to 2013. All patients in both studies were treated with SBRT for apically located lung tumors localized superior to the aortic arch. Toxicities were graded according to Common Terminology Criteria for Adverse Events, and a probit dose response model was created with maximum likelihood parameter fitting. Results This analysis includes a total of 89 brachial plexus maximum point dose (Dmax) values from both institutions. Among the 14 patients who developed brachial plexopathy, the most common complications were grade 2, comprising 7 patients. The median follow-up was 30 months (range 6.1–72.2) in the Karolinska dataset, and the Indiana dataset had a median of 13 months (range 1–71). Both studies had a median range of 3 fractions, but in the Indiana dataset, 9 patients were treated in 4 fractions, and the paper did not differentiate between the two, so our analysis is considered to be in 3–4 fractions, one of the main limitations. The probit model showed that the risk of brachial plexopathy with Dmax of 26 Gy in 3–4 fractions is 10%, and 50% with Dmax of 70 Gy in 3–4 fractions. Conclusions This analysis is only a preliminary result because more details are needed as well as additional comprehensive datasets from a much broader cross-section of clinical practices. When more institutions join the QUANTEC and HyTEC methodology of reporting sufficient details to enable data pooling, our field will finally reach an improved understanding of human dose tolerance.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 72
Author(s):  
Sergiu Spataru ◽  
Peter Hacke ◽  
Dezso Sera

An in-situ method is proposed for monitoring and estimating the power degradation of mc-Si photovoltaic (PV) modules undergoing thermo-mechanical degradation tests that primarily manifest through cell cracking, such as mechanical load tests, thermal cycling and humidity freeze tests. The method is based on in-situ measurement of the module’s dark current-voltage (I-V) characteristic curve during the stress test, as well as initial and final module flash testing on a Sun simulator. The method uses superposition of the dark I-V curve with final flash test module short-circuit current to account for shunt and junction recombination losses, as well as series resistance estimation from the in-situ measured dark I-Vs and final flash test measurements. The method is developed based on mc-Si standard modules undergoing several stages of thermo-mechanical stress testing and degradation, for which we investigate the impact of the degradation on the modules light I-V curve parameters, and equivalent solar cell model parameters. Experimental validation of the method on the modules tested shows good agreement between the in-situ estimated power degradation and the flash test measured power loss of the modules, of up to 4.31 % error (RMSE), as the modules experience primarily junction defect recombination and increased series resistance losses. However, the application of the method will be limited for modules experiencing extensive photo-current degradation or delamination, which are not well reflected in the dark I-V characteristic of the PV module.


2021 ◽  
Vol 13 (10) ◽  
pp. 1865
Author(s):  
Gabriel Calassou ◽  
Pierre-Yves Foucher ◽  
Jean-François Léon

Stack emissions from the industrial sector are a subject of concern for air quality. However, the characterization of the stack emission plume properties from in situ observations remains a challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a new method, based on the combination of HS airborne acquisition and surface reflectance imagery derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness (AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF reduces the error associated with estimating the surface reflectance below the plume, particularly for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation method (OEM), based on the forward model and allowing for uncertainties in the observations and in the model parameters. The a priori state vector is provided by a sequential method using the root mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume is 0.125 μμm, with an uncertainty of 0.05 μμm. These results are close to the ultra-fine mode (modal radius around 0.1 μμm) observed from in situ measurements within metallurgical plant plumes from previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2010 ◽  
Vol 25 (1) ◽  
pp. 38-41 ◽  
Author(s):  
Menachem Ben-Ezra ◽  
Yuval Palgi ◽  
Amit Shrira ◽  
Dina Sternberg ◽  
Nir Essar

AbstractIntroduction:Exposure to prolonged war stress is understudied. While there is debate regarding the empirical data of the dose-response model for post-traumatic stress disorder (PTSD), little is known about how weekly changes in external stress influences the level of PTSD symptoms. The purpose of this study was to measure the relation between objective external stress and PTSD symptoms across time, and thus, gain a deeper understating of the dose-response model.Hypothesis:The study hypothesis postulates that the more severe the external stressor, the more severe the exhibition of traumatic symptoms.Methods:Thirteen special army administrative staff (SAAS) members from the Rambam Medical Center in Haifa attended seven intervention meetings during the war. These personnel answered a battery of questionnaires regarding demographics and PTSD symptoms during each session. A non-parametric test was used in order to measure the changes in PTSD symptoms between sessions. Pearson correlations were used in order to study the relationship between the magnitude of external stressors and the severity of PTSD symptoms.Results:The results suggested that there was a significant relationship between the magnitude of external stressors and the severity of PTSD symptoms. These results are in line with the dose-response model.Conclusions:The results suggest that a pattern of decline in PTSD symptoms confirm the dose-response model for PTSD.


Sign in / Sign up

Export Citation Format

Share Document