scholarly journals Improved energy balance at a municipal Wastewater Treatment Plant through waste activated sludge low-temperature alkaline pretreatment

Author(s):  
Magdalena Budych-Gorzna ◽  
Lukasz Jaroszynski ◽  
Piotr Oleskowicz-Popiel
2019 ◽  
Vol 11 (3) ◽  
pp. 622 ◽  
Author(s):  
Isabella Pecorini ◽  
Francesco Baldi ◽  
Renato Iannelli

Four inocula collected from different operating facilities were tested in their hydrogenic performances by means of two biochemical hydrogen potential test set-ups using sucrose and food waste as substrates, with the aim of evaluating the influence of inoculum media in batch fermentative assays. The selected inocula were: activated sludge collected from the aerobic unit of a municipal wastewater treatment plant, digested sludge from an anaerobic reactor treating organic waste and cattle manure, digested sludge from an anaerobic reactor treating agroindustrial residues, and digested sludge from an anaerobic reactor of a municipal wastewater treatment plant. Test results, in terms of specific hydrogen production, hydrogen conversion efficiency, and volatile solids removal efficiency, were significantly dependent on the type of inoculum. Statistical analysis showed different results, indicating that findings were due to the different inocula used in the tests. In particular, assays performed with activated sludge showed the highest performances for both substrates and both experimental set-ups.


2014 ◽  
Vol 9 (2) ◽  
pp. 235-242 ◽  
Author(s):  
S. Morling ◽  
A. Franquiz ◽  
J. Måhlgren ◽  
Å. Westlund

A biological wastewater treatment plant, Nynäshamn treating municipal wastewater and septic sludge operated with a combination of sequencing batch reactor (SBR) units and constructed wetland is presented in this paper. The plant has to treat low temperature wastewater in winter time, still with demands for a biological nitrogen removal. Treatment results from a 13 year operation period are presented. Special attention was given to the nutrient removal during low temperature conditions. The combination of a SBR system along with classical chemical precipitation and a polishing step based on ‘natural’ extensive treatment has been a sustainable way to keep the discharge levels low. The combined treatment with SBR and the wetland at the Nynäshamn plant has resulted in improved discharge levels typically as follows (annual mean values); BOD7 3 mg/l, to be compared with the formal consent value of <15 mg/l, total P < 0.1 mg/l, to be compared with the formal consent value of <0.5 mg/l and total N 7 mg/l, to be compared with the formal consent value of <15 mg/l. It is also important to underline that the change of process train has resulted in a substantial saving of the precipitant agent for phosphorus removal. The needed dosage is now 50% of the previous dose, before the implementation of the SBR-units.


2014 ◽  
Vol 878 ◽  
pp. 702-707 ◽  
Author(s):  
Chang Liu ◽  
Ping Zeng ◽  
Yong Hui Song ◽  
Jian Guang Cheng ◽  
Chao Wei Zhu ◽  
...  

Three kinds of surplus activated sludge were pretreated by alkali and combination of alkali and ultrasonic. The changes of PO43-P, TP, SCOD, TOC, TS, VS before and after pretreatment were investigated. The results showed that phosphorus and organic matter could be released into supernatant both by alkali and ultrasonic. The surplus activated sludge from municipal wastewater treatment plant was easier to be broken than that from pharmaceutical wastewater treatment plant. The activated sludge from Qinghe wastewater treatment plant could be selected for further phosphorus recovery since the largest quantity of phosphorus release and the lowest organic matter release ratio among the three kinds of surplus activated sludge.


2017 ◽  
Author(s):  
Alexandre Amaro ◽  
Henrik Hanson ◽  
Fabio Kaczala ◽  
Marcia Marques ◽  
William Hogland

Three ozone-based advanced oxidation treatments (O3; O3 with initial pH adjustment and; O3/UV with initial pH adjustment) were compared for the treatment of a recalcitrant wastewater generated during washing/cleaning of surfaces and equipment used in filling and gluing processes (urea-formaldehyde and phenol-formaldehyde resins) in a wood-floor industry in Sweden. The wastewater (initial COD 3,400-4,000 mg/L) was obtained at the outlet of a sedimentation tank, which receive an inflow with an average COD of 45,000 mg/L. The experiments were performed in a semi-batch microbubble column reactor connected to a UV reactor, where 2.5 L samples of wastewater were submitted to the maximum dose of 2 g of O3 per gram of initial COD. For the full-factorial design, the independent variables were O3 concentration (g O3/Nm3); recirculation flow (L/min); and initial pH (pHi). The evaluation of the treatment performance was based on COD and TOC reductions (in %), and the effluent obtained was used in respirometric assays with activated sludge obtained at a municipal wastewater treatment plant to assess biodegradability/inhibitory effects. The results showed that ozonation at the original low pH promoted a reduction of 65% and 31% of COD and TOC respectively, but made the effluent less biodegradable. The highest COD and TOC reductions were achieved when O3 /UV treatment with pHi = 9.3 were applied (93% e 56% reductions for COD and TOC respectively). The results with the respirometry tests suggest that application of O3 only at higher pH values promoted biodegradability enhancement of the effluent, making it treatable by microbiota obtained with activated sludge from a municipal wastewater treatment plant.


Author(s):  
Bilge Alpaslan Kocamemi ◽  
Halil Kurt ◽  
Ahmet Sait ◽  
Fahriye Sarac ◽  
Ahmet Mete Saatci ◽  
...  

Following the announcement of SARS-CoV-2 worldwide pandemic spread by WHO on March 11, 2020, wastewater based epidemiology received great attention in several countries: The Netherlands [Medama et al., 2020; K-Lodder et al., 2020], USA [Wu et al., 2020; Memudryi et al., 2020], Australia [Ahmed et al., 2020], France [Wurtzer et al., 2020], China [Wang et al., 2020], Spain [Randazzo et al., 2020; Walter et al., 2020], Italy (La Rosa et al., 2020; Rimoldi et al., 2020) and Israel [Or et al., 2020], performed analysis in wastewaters by using different virus concentration techniques. Turkey took its place among these countries on 7th of May, 2020 by reporting SARS-CoV-2 RT-qPCR levels at the inlet of seven (7) major municipal wastewater treatment plants (WWTPs) of Istanbul [Alpaslan Kocamemi et al., 2020], which is a metropole with 15.5 million inhabitants and a very high population density (2987 persons/km2) and having about 65 % of Covid-19 cases in Turkey. Sludges that are produced in WWTPs should be expected to contain SARS-CoV-2 virus as well. There has not yet been any study for the fate of SAR-CoV-2 in sludges generated from WWTPs. Knowledge about the existing of SARS-CoV-2 in sludge may be useful for handling the sludge during its dewatering, stabilizing and disposal processes. This information will also be valuable in case of sludges that are used as soil conditioners in agriculture or sent to landfill disposal. In wastewater treatment plants, generally two different types of sludges are generated; primary sludge (PS) and waste activated sludge (WAS). PS forms during the settling of wastewater by gravity in the primary settling tanks. Little decomposition occurs during primary sludge formation. Since most of the inorganic part of the wastewater is removed in the earlier grit removal process, the PS consists of mainly organic material that settles. The PS is about 1-2 % solids by weight. In the biological treatment part of the WWTPs, the biomass that forms in the anaerobic, anoxic and oxic zones of the process is settled in final clarifiers by gravity and returned to the beginning of the biological process so that it is not washed off. The waste activated sludge (WAS) is the excess part of the biomass that grows in this secondary treatment process. It has to be removed from the process not to increase the mixed liquor suspended solids concentration (bacteria concentration) in the secondary process more than a fixed value. The WAS is about 0.6 - 0.9 % solids by weight. This work aims to find whether SARS-CoV-19 is present in the PS and WAS before it is dewatered and sent to anaerobic or aerobic digester processes or to thermal drying operations. For this purpose, on the 7th of May 2020, two (2) PS samples were collected from Ambarlı and Tuzla WWTPs, seven (7) WAS samples were collected from Terkos, Ambarlı, Atakoy I & II, Pasakoy II, Buyukcekmece and Tuzla I WWTPs. Polyethylene glycol 8000 (PEG 8000) adsorption [Wu et al., 2020] SARS-Cov-2 concentration method was used for SARS-CoV-2 concentration after optimization. [Alpaslan Kocamemi et al., 2020]. Real time RT-PCR diagnostic panel validated by US was used to quantify SARS-CoV-2 RNA in primary and waste activated sludge samples taken from WWTPs in Istanbul. All samples were tested positive. Titers of SARS-CoV-2 have been detected ranging copies between 1.17E4 to 4.02x104 per liter.


Sign in / Sign up

Export Citation Format

Share Document