Recent progress on low dimensional perovskite solar cells

2018 ◽  
Vol 27 (4) ◽  
pp. 1091-1100 ◽  
Author(s):  
Lingfeng Chao ◽  
Ze Wang ◽  
Yingdong Xia ◽  
Yonghua Chen ◽  
Wei Huang
2020 ◽  
Vol 11 ◽  
pp. 51-60 ◽  
Author(s):  
Xianfeng Dai ◽  
Ke Xu ◽  
Fanan Wei

Perovskite solar cells (PSCs) are set to be game changing components in next-generation photovoltaic technology due to their high efficiency and low cost. In this article, recent progress in the development of perovskite layers, which are the basis of PSCs, is reviewed. Achievements in the fabrication of high-quality perovskite films by various methods and techniques are introduced. The reported works demonstrate that the power conversion efficiency of the perovskite layers depends largely on their morphology and the crystalline quality. Furthermore, recent achievements concerning the scalability of perovskite films are presented. These developments aim at manufacturing large-scale perovskite solar modules at high speed. Moreover, it is shown that the development of low-dimensional perovskites plays an important role in improving the long-term ambient stability of PSCs. Finally, these latest advancements can enhance the competitiveness of PSCs in photovoltaics, paving the way for their commercialization. In the closing section of this review, some future critical challenges are outlined, and the prospect of commercialization of PSCs is presented.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-51
Author(s):  
Malouangou Maurice Davy ◽  
Tsiba Matondo Jadel ◽  
Chen Qin ◽  
Bai Luyun ◽  
Guli Mina

Low dimensional (quasi-2D) and mixed dimensional (2D/3D) halide perovskites have emerged in the field of perovskite solar cells.


2021 ◽  
pp. 131754
Author(s):  
Lyubov A. Frolova ◽  
Lavrenty G. Gutsev ◽  
Bala R. Ramachandran ◽  
Nadezhda N. Dremova ◽  
Sergey M. Aldoshin ◽  
...  

Author(s):  
Noor Titan Putri Hartono ◽  
Marie-Hélène Tremblay ◽  
Sarah Wieghold ◽  
Benjia Dou ◽  
Janak Thapa ◽  
...  

Incorporating a low dimensional (LD) perovskite capping layer on top of perovskite absorber, improves the stability of perovskite solar cells (PSCs). However, in the case of mixed-halide perovskites, which can...


2018 ◽  
Vol 1 (2) ◽  
pp. 52-62 ◽  
Author(s):  
Seyedali Emami ◽  
Luísa Andrade ◽  
Adélio Mendes

Perovskite solar cells made a huge breakthrough among the nanostructured thin film photovoltaics. They exhibited certified power conversion efficiency (PCE) as high 24 % in 2015. A vast amount of research were spent on improvement of PCE and lowering the fabrication process temperature, resulting in outstanding outcomes in these areas. In contrast, the long-term stability and commercialization of these devices were not well studied. The review briefly summaries the challenges of perovskite solar cells in the road of stabilization and commercialization.


2015 ◽  
Vol 3 (17) ◽  
pp. 8992-9010 ◽  
Author(s):  
Shiqiang Luo ◽  
Walid A. Daoud

While energy shortage is always an issue, the impending exhaustion of fossil fuel sources makes it an ever increasingly pressing one.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 329 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

It is necessary to develop semitransparent photovoltaic cell for increasing the energy density from sunlight, useful for harvesting solar energy through the windows and roofs of buildings and vehicles. Current semitransparent photovoltaics are mostly based on Si, but it is difficult to adjust the color transmitted through Si cells intrinsically for enhancing the visual comfort for human. Recent intensive studies on translucent polymer- and perovskite-based photovoltaic cells offer considerable opportunities to escape from Si-oriented photovoltaics because their electrical and optical properties can be easily controlled by adjusting the material composition. Here, we review recent progress in materials fabrication, design of cell structure, and device engineering/characterization for high-performance/semitransparent organic and perovskite solar cells, and discuss major problems to overcome for commercialization of these solar cells.


Sign in / Sign up

Export Citation Format

Share Document