Hot electron-induced electrochemiluminescence at cellulose derivatives-based composite electrodes

2019 ◽  
Vol 833 ◽  
pp. 349-356 ◽  
Author(s):  
Päivi Grönroos ◽  
Kalle Salminen ◽  
Jouni Paltakari ◽  
Qiang Zhang ◽  
Nan Wei ◽  
...  
2018 ◽  
Vol 282 ◽  
pp. 147-154 ◽  
Author(s):  
Kalle Salminen ◽  
Päivi Grönroos ◽  
Jarkko Eskola ◽  
Eemi Nieminen ◽  
Harri Härmä ◽  
...  

1998 ◽  
Vol 08 (PR3) ◽  
pp. Pr3-233-Pr3-236
Author(s):  
M. Frericks ◽  
H. F.C. Hoevers ◽  
P. de Groene ◽  
W. A. Mels ◽  
P. A.J. de Korte

2002 ◽  
Vol 177 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Evelin Jaehne ◽  
Thomas Kowalik ◽  
Hans-Juergen P. Adler ◽  
Andreas Plagge ◽  
Martin Stratmann

Author(s):  
Theodoros Tsoulos ◽  
Supriya Atta ◽  
Maureen Lagos ◽  
Michael Beetz ◽  
Philip Batson ◽  
...  

<div>Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags or phototherapeutic agents, or to design novel hot-electron based photocatalysts. From a fundamental standpoint, they represent important tunable platforms to study the dependence of hot carrier energy and dynamics on plasmon band intensity and position. Toward the realization of these platforms, holistic approaches taking into account both theory and experiments to study the fundamental behavior of these</div><div>particles are needed. Arguably, the intrinsic difficulties underlying this goal stem from the inability to rationally design and effectively synthesize nanoparticles that are sufficiently monodispersed to be employed for corroborations of the theoretical results without the need of single particle experiments. Herein, we report on our concerted computational and experimental effort to design, synthesize, and explain the origin and morphology-dependence of the plasmon modes of a novel gold nanostar system, with an approach that builds upon the well-known plasmon hybridization model. We have synthesized monodispersed samples of gold nanostars with finely tunable morphology employing seed-mediated colloidal protocols, and experimentally observed narrow and spectrally resolved harmonics of the primary surface plasmon resonance mode both at the single particle level (via electron energy loss spectroscopy) and in ensemble (by UV-Vis and ATR-FTIR spectroscopies). Computational results on complex anisotropic gold nanostructures are validated experimentally on samples prepared colloidally, underscoring their importance as ideal testbeds for the study of structure-property relationships in colloidal nanostructures of high structural complexity.</div>


Author(s):  
Jim Vickers ◽  
Nader Pakdaman ◽  
Steven Kasapi

Abstract Dynamic hot-electron emission using time-resolved photon counting can address the long-term failure analysis and debug requirements of the semiconductor industry's advanced devices. This article identifies the detector performance parameters and components that are required to scale and keep pace with the industry's requirements. It addresses the scalability of dynamic emission with the semiconductor advanced device roadmap. It is important to understand the limitations to determining that a switching event has occurred. The article explains the criteria for event detection, which is suitable for tracking signal propagation and looking for logic or other faults in which timing is not critical. It discusses conditions for event timing, whose goal is to determine accurately when a switching event has occurred, usually for speed path analysis. One of the uses of a dynamic emission system is to identify faults by studying the emission as a general function of time.


2013 ◽  
Vol 9 (3) ◽  
pp. 252-260
Author(s):  
M. Stawny ◽  
K. Dettlaff ◽  
B. Marciniec ◽  
E. Jaroszkiewicz ◽  
B. Czajka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document