Photoassisted chemical energy conversion into electricity using a sulfite‑iron photocatalytic fuel cell

2021 ◽  
Vol 881 ◽  
pp. 114940
Author(s):  
Izabela Campos Sena ◽  
Davi de Oliveira Sales ◽  
Tatiana Santos Andrade ◽  
Mariandry Rodriguez ◽  
Adilson Cândido da Silva ◽  
...  
2020 ◽  
Vol 56 (88) ◽  
pp. 13611-13614
Author(s):  
Jialu Wang ◽  
Xian Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
Haimin Zhang

A new type of direct 5-hydroxymethylfurfural (HMF) oxidation fuel cell based on a bifunctional PtNiSx/CB catalyst not only transformed chemical energy into electric energy but also converted HMF into value-added 2,5-furandicarboxylic (FDCA).


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Author(s):  
Erick Leonar Ribeiro ◽  
Elijah M Davis ◽  
Mahshid Mokhtarnejad ◽  
Sheng Hu ◽  
Dibyendu Mukherjee ◽  
...  

Rapidly expanding global energy demands due to fast-paced human-technology interfaces have propelled fuel cell technology as a sustainable energy-conversion alternative. Nonetheless, the rational development of such technology demands the engineering...


EnergyChem ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 100051
Author(s):  
Chuanbiao Bie ◽  
Bei Cheng ◽  
Jiajie Fan ◽  
Wingkei Ho ◽  
Jiaguo Yu

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1141
Author(s):  
Ángel Encalada-Dávila ◽  
Mayken Espinoza-Andaluz ◽  
Julio Barzola-Monteses ◽  
Shian Li ◽  
Martin Andersson

A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy into electrical energy and heat. The energy conversion is simple; however, the multiphysics phenomena involved in the energy conversion process must be analyzed in detail. The gas diffusion layer (GDL) provides a diffusion media for reactant gases and gives mechanical support to the fuel cell. It is a complex medium whose properties impact the fuel cell’s efficiency. Therefore, an in-depth analysis is required to improve its mechanical and physical properties. In the current study, several transport phenomena through three-dimensional digitally created GDLs have been analyzed. Once the porous microstructure is generated and the transport phenomena are mimicked, transport parameters related to the fluid flow and mass diffusion are computed. The GDLs are approximated to the carbon paper represented as a grouped package of carbon fibers. Several correlations, based on the fiber diameter, to predict their transport properties are proposed. The digitally created GDLs and the transport phenomena have been modeled using the open-source library named Open Pore Network Modeling (OpenPNM). The proposed correlations show a good fit with the obtained data with an R-square of approximately 0.98.


2005 ◽  
Vol 44 (20) ◽  
pp. 6828-6840 ◽  
Author(s):  
Paul G. Hoertz ◽  
Thomas E. Mallouk

Sign in / Sign up

Export Citation Format

Share Document