Identification of the sea ice diatom biomarker IP25 and related lipids in marine mammals: A potential method for investigating regional variations in dietary sources within higher trophic level marine systems

2013 ◽  
Vol 441 ◽  
pp. 99-104 ◽  
Author(s):  
T.A. Brown ◽  
S.T. Belt ◽  
S.H. Ferguson ◽  
D.J. Yurkowski ◽  
N.J. Davison ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeremy McCormack ◽  
Paul Szpak ◽  
Nicolas Bourgon ◽  
Michael Richards ◽  
Corrie Hyland ◽  
...  

2021 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>In this project we analyze artwork and recorded statements of 5<sup>th</sup> grade students from the community of Utqiaġvik, Alaska, who participated in a science-art outreach activity. The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students each at Fred Ipalook Elementary. The predominantly Inupiat people of Utqiaġvik are among those who will be most impacted by climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change, the teachers reported that the subject is not generally covered in the elementary school curriculum.</p><p>The scientist and the local outreach specialist gave a short presentation about sea ice and climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure. We then showed the students a large poster of historical and projected sea ice decline, and asked the students to help us fill in the white space beneath the lines. The artist led the children in making small paintings that represent things that are important to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever they wanted). We returned to the class later that week and had each student briefly introduce themselves and their painting, and place it on the large graph of sea ice decline, which included the dire predictions of the RCP8.5 scenario. Then we added the more hopeful RCP2.6 scenario to end on a positive note.</p><p>Common themes expressed in the students’ artwork included subsistence hunting, other aspects of traditional Inupiat culture, nature and family. Modern themes such as sports and Pokémon were also common. The students reacted to the topic of climate change with pictures of whales, polar bears and other animals, and captions such as “Save the world/ice/animals.” There were several paintings showing unsuccessful hunts for whales or seals. Some students displayed an understanding of ecosystem science in their recorded statements. For example, a student who painted the sun and another who painted a krill both succinctly described energy flow in food webs that support the production of whales (for example, “I drew krill because without krill there wouldn’t be whales”). Some of the students described the consequences of sea ice loss to local wildlife with devastating succinctness (sea ice is disappearing and polar bears will go extinct). The overall sense was that the children had a strong grasp of the potential consequences of climate change to their region and way of life.</p>


2021 ◽  
Author(s):  
Stefanie Rynders ◽  
Yevgeny Aksenov ◽  
Andrew Coward

<p>Marginal ice zones are areas with many interactions between ocean, surface waves, sea ice and atmosphere. Increasing computational power makes it possible to perform increasingly complex simulations of marine systems, with more components of the climate system that are more interacting. We have produced a set of increasingly coupled simulations with NEMO, CICE and WW3, exchanging more and more variables. The configuration is global at 1 degree resolution. The focus is on wave attenuation in sea ice and the impact of using modelled wave height for ocean mixing due to breaking waves. The example simulations give an idea of the possible impact on the simulated state versus the still considerable computational cost.</p>


2014 ◽  
Vol 179 (4) ◽  
pp. 138-157
Author(s):  
Vladimir V. Melentyev ◽  
Vladimir I. Chernook ◽  
Konstantin V. Melentyev ◽  
Alexandr A. Startsev ◽  
Tatiyana A. Zakharova

Advanced technology of satellite traceology is presented on the base of using the synthetic aperture radar (SAR) with high space and deep resolution installed for the first time onboard Soviet space station Almaz and now functioning successfully onboard the satellites Envisat and RADARSAT. The SAR traceology is the central issue of the satellite eco-criminology and concerns to theory of the traces formation, variability, and preservation in undamaged state. Ships coordinates, their traces and complexity of ice routing are fixed by the method of satellite charting, and their possible influence on ice-associated marine mammals is assessed. Numerous examples of SAR satellite control on navigation in stormy weather and ships’ presence in ice with different compactness, origin and age are overviewed, as well as impact of travel facilities on ice-associated animals welfare. Some incidents potentially dangerous for marine mammals are considered for the Gulf of Finland (Baltic Sea). Parameters of the ice cover, as openings, large fractures, and polynyas made by icebreakers in this area were determined on the base of the satellite SAR data, comprehensive digital ice maps with scheme of real ships’ routes in the ice were prepared, and the routes correspondence with ESIMO demands was assessed. The satellite SAR survey in the Kandalaksha Bay (White Sea) allowed to fix that winter navigation in the White Sea provoked formation of fractures and polynyas and reduced the sea ice area suitable for reproduction of greenland seals. For validation of this situation, airborne control was organized aboard the aircraft L-410 «Nord» that provided panoramic and IR images of ship channel through the rookeries of the seals in time of their reproduction. Besides, the aircraft made observations of pacific walruses behavior in the Bering Sea which were superposed with the satellite SAR and passive microwave survey in frame of the project «Pacific Walrus». Traceological control of the sea ice in the Anadyr Bay (Bering Sea) allowed to determine the size of openings in the ice and to assess the influence of tide and wind on welfare of ice-associated marine mammals. Some cases of infringement the regulation of navigation were revealed by means of the satellite SAR traceology.


Sea Ice ◽  
2010 ◽  
pp. 395-423 ◽  
Author(s):  
Cynthia T. Tynan ◽  
David G. Ainley ◽  
Ian Stirling

Ocean Science ◽  
2018 ◽  
Vol 14 (6) ◽  
pp. 1423-1433 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high-resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of variables that facilitate observations, yielding better understanding of physical, chemical, and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and 8 months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–2016 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure, and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms, and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142103 ◽  
Author(s):  
Marlee A. Tucker ◽  
Tracey L. Rogers

Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial ( n = 51) and marine ( n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.


2016 ◽  
Vol 9 (3) ◽  
pp. 947-964 ◽  
Author(s):  
Jonathan Beecham ◽  
Jorn Bruggeman ◽  
John Aldridge ◽  
Steven Mackinson

Abstract. End-to-end modelling is a rapidly developing strategy for modelling in marine systems science and management. However, problems remain in the area of data matching and sub-model compatibility. A mechanism and novel interfacing system (Couplerlib) is presented whereby a physical–biogeochemical model (General Ocean Turbulence Model–European Regional Seas Ecosystem Model, GOTM–ERSEM) that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosystems is coupled to a dynamic ecosystem model (Ecosim), which predicts food-web interactions among higher trophic level (HTL) organisms. Coupling is achieved by means of a bespoke interface, which handles the system incompatibilities between the models and a more generic Couplerlib library, which uses metadata descriptions in extensible mark-up language (XML) to marshal data between groups, paying attention to functional group mappings and compatibility of units between models. In addition, within Couplerlib, models can be coupled across networks by means of socket mechanisms. As a demonstration of this approach, a food-web model (Ecopath with Ecosim, EwE) and a physical–biogeochemical model (GOTM–ERSEM) representing the North Sea ecosystem were joined with Couplerlib. The output from GOTM–ERSEM varies between years, depending on oceanographic and meteorological conditions. Although inter-annual variability was clearly present, there was always the tendency for an annual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flagellates and dinoflagellates through the summer, resulting in an early summer peak in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model, was highly seasonal with little winter food for the higher trophic levels. The Ecosim model was originally based on the assumption of constant annual inputs of energy and, consequently, when coupled, pelagic species suffered population losses over the winter months. By contrast, benthic populations were more stable (although the benthic linkage modelled was purely at the detritus level, so this stability reflects the stability of the Ecosim model). The coupled model was used to examine long-term effects of environmental change, and showed the system to be nutrient limited and relatively unaffected by forecast climate change, especially in the benthos. The stability of an Ecosim formulation for large higher tropic level food webs is discussed and it is concluded that this kind of coupled model formulation is better for examining the effects of long-term environmental change than short-term perturbations.


2018 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of parameters that facilitate observations, yielding better understanding of physical, chemical and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and eight months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–16 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time-series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


Sign in / Sign up

Export Citation Format

Share Document