Spine reorientation influences drift particle capture efficiency in sea urchins

2014 ◽  
Vol 461 ◽  
pp. 102-106 ◽  
Author(s):  
Matthew N. George ◽  
Emily Carrington
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Zhengang Liu ◽  
Weinan Diao ◽  
Zhenxia Liu ◽  
Fei Zhang

Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 91951-91959 ◽  
Author(s):  
Yang Zhao ◽  
Zhaoxiang Zhong ◽  
Ze-Xian Low ◽  
Zhong Yao

Carbon nanotubes (CNTs) are very small diameter fibers that have the potential to be integrated into filters to further increase particle capture efficiency.


2000 ◽  
Vol 43 (3) ◽  
pp. 30-40 ◽  
Author(s):  
Wayne Kelly ◽  
Donald Grant ◽  
Joseph Zahka

Membrane filters are often used to remove small particles from liquids in recirculating etch baths (REBs). The ideal filter for this application would have both high particle capture efficiency and high flow permeability. Unfortunately, filters with high particle capture efficiency often have low permeability because the dominant particle capture mechanism is mechanical sieving. This paper describes more efficient capture mechanisms, interception and diffusion, and a filter with a surface modified to capture particles by these mechanisms. The filter has the same permeability as a conventional 0.45-μm filter and retains particles more efficiently than a conventional 0.05-μm filter. The filter is capable of removing multiple types of small (0.065-μm) particles (polystyrene latex, silicon nitride, alumina, etc.) with high efficiency (> 99.9 percent).


2013 ◽  
Vol 733 ◽  
pp. 171-188 ◽  
Author(s):  
Alexis Espinosa-Gayosso ◽  
Marco Ghisalberti ◽  
Gregory N. Ivey ◽  
Nicole L. Jones

AbstractParticle capture, whereby suspended particles contact and adhere to a solid surface (a ‘collector’), is an important mechanism for a range of environmental processes including suspension feeding by corals and ‘filtering’ by aquatic vegetation. In this paper, we use two- and three-dimensional direct numerical simulations to quantify the capture efficiency ($\eta $) of low-inertia particles by a circular cylindrical collector at intermediate Reynolds numbers in the vortex-shedding regime (i.e. for $47\lt \mathit{Re}\leq 1000$, where $\mathit{Re}$ is the collector Reynolds number). We demonstrate that vortex shedding induces oscillations near the leading face of the collector which greatly affect the quantity and distribution of captured particles. Unlike in steady, low-$\mathit{Re}$ flow, particles directly upstream of the collector are not the most likely to be captured. Our results demonstrate the dependence of the time-averaged capture efficiency on $\mathit{Re}$ and particle size, improving the predictive capability for the capture of particles by aquatic collectors. The transition to theoretical high-Reynolds-number behaviour (i.e. $\eta \sim {\mathit{Re}}^{1/ 2} $) is complex due to comparatively rapid changes in wake conditions in this Reynolds number range.


Sign in / Sign up

Export Citation Format

Share Document