Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management

2010 ◽  
Vol 91 (12) ◽  
pp. 2688-2695 ◽  
Author(s):  
Francisco M. Padilla ◽  
Beatriz Vidal ◽  
Joaquín Sánchez ◽  
Francisco I. Pugnaire
2006 ◽  
Vol 59 ◽  
pp. 266-270 ◽  
Author(s):  
M. Bell

Chilean needle grass (Nassella neesiana) is a containment pest in the Regional Pest Management Strategy for Marlborough It is of concern because it has sharptipped seeds that bore into the eyes and pelts of livestock Discovered in Marlborough in the 1930s it now infests 4311 ha In 1987 18 properties were infested increasing to 53 by 2000 and 96 by December 2005 In addition both the range and density of Chilean needle grass has increased significantly since 1987 and to date no infestations have been eradicated Failure to stop this spread is due to the difficulty of both identification and control Effective control and land management methods for this weed are urgently needed The probability of this weed spreading further both within and beyond Marlborough appears to be high This conclusion along with land use changes has implications for the review of the Regional Pest Management Plan


Author(s):  
Qipeng Liao ◽  
Zhe Wang ◽  
Chunbo Huang

Land use planning usually increases the uncertainties of the ecosystem structures and functions because various human demands usually bring both positive and negative ecological effects. It is critical for estimating various land use changes and their ecological effects, but the previous studies have failed to decouple the respective and the combined effects of different land use changes on ecosystem services. Net primary productivity (NPP) could be used to indicate many ecosystem services such as carbon sequestration and storage. Here, we employed a light use efficiency model to estimate the spatial and temporal dynamics of NPP in the Three Gorges Reservoir (TGR) area from 2000 to 2015, and designed four scenarios to analyze the relative roles of afforestation, urbanization and storing water on NPP dynamics. Our results documented that terrestrial NPP of the TGR area increased from 547.40 gC•m−2 to 629.96 gC•m−2, and carbon sequestration capacities were 31.66 TgC (1Tg = 1012g) and 36.79 TgC in 2000 and 2015, respectively. Climate change and land use change both could contribute to carbon sequestration with 4.08 TgC and 1.05 TgC. Among these land use changes, only afforestation could sequester carbon with 2.04 TgC, while urbanization-induced and impoundment-induced emissions were 0.12 TgC and 0.32 TgC, respectively, and other land use changes also could release 0.55 TgC of carbon. This finding suggested that although positive and negative environmental effects happened simultaneously over the past decades, green infrastructure could effectively offset the carbon emissions from urbanization and storing water in the TGR area, which provides some fundamental supports for further ecological restoration and contributes to empowering land use policies towards carbon sequestration and storage at the regional scale.


2021 ◽  
Author(s):  
◽  
Bridget Ellen O'Leary

<p>The global carbon cycle has been significantly modified by increased human demand and consumption of natural resources. Billions of tonnes of carbon moves between the Earth’s natural spheres in any given year, with anthropogenic activities adding approximately 7.1 gigatonnes (Gt) of carbon (C) to this flux. On a global basis, the sum of C in living terrestrial biomass and soils is approximately three times greater than the carbon dioxide (CO2) in the atmosphere; with the current soil organic carbon (OC) pool estimated at about 1500 Gt (Falkowski et al. 2000). With total global emissions of CO2 from soils being acknowledged as one of the largest fluxes in the carbon cycle, ideas and research into mitigating this flux are now being recognised as extremely important in terms of climate change and the reduction of green house gases (GHG) in the future. Additional co-benefits of increasing carbon storage within the soil are improvements in a soil’s structural and hydrological capacity. For example, increasing organic carbon generally increases infiltration and storage capacity of soil, with potential to reduce flooding and erosion. There are several management options that can be applied in order to increase the amount of carbon in the soil. Adjustments to land management techniques (e.g. ploughing) and also changes to cropping and vegetation type can increase organic carbon content within the subsurface (Schlesinger & Andrews, 2000). If we are able to identify specific areas of the landscape that are prone to carbon losses or have potential to be modified to store additional carbon, we can take targeted action to mitigate and apply better management strategies to these areas. This research aims to investigate issues surrounding soil carbon and the more general sustainability issues of the Gisborne/East-Cape region, North Island, New Zealand. Maori-owned land has a large presence in the region. Much of this land is described as being “marginal” in many aspects. The region also has major issues in terms of flooding and erosion. Explored within this research are issues surrounding sustainability, (including flooding, erosion, and Maori land) with particular emphasis on carbon sequestration potential and the multiple co-benefits associated with increasing the amount of carbon in the soil. This research consists of a desktop study and field investigations focusing on differences in soil type and vegetation cover/land use and what effects these differences have on soil OC content within the subsurface. Soil chemical and physical analysis was undertaken with 220 soil samples collected from two case-study properties. Particle size analysis was carried out using a laser particle sizer (LPS) to determine textural characteristics and hydraulic capacity. Soil organic carbon (OC) content was determined following the colorimetric method, wet oxidation (Blakemore et al. 1987), with results identifying large difference in soil OC quantification between sampled sites. National scale data is explored and then compared with the results from this field investigation. The direct and indirect benefits resulting from more carbon being locked up in soil may assist in determining incentives for better land-use and land management practices in the Gisborne/East-Cape region. Potentially leading to benefits for the land-user, the environment and overall general sustainability.</p>


2019 ◽  
Vol 96 (1) ◽  
pp. 40-46
Author(s):  
Ravindra Ramnarine ◽  
◽  
Seunarine Persad ◽  
Ian Rampersad

The lands of the Naparima Peneplain, Trinidad and Tobago, are an invaluable resource with multiple land use characteristics including agricultural diversification. Sections are classified as Class V soils, non-resilient with minimum recovery over the medium term, and as Class IV soils, slightly resilient with improvements in medium term resulting in significant land management and land use changes. These lands were under sugarcane cultivation for centuries, from the colonial era until the closure of the sugar factory in 2003. Since then, as in so many other Caribbean territories, the land has been ear-marked for agricultural diversification and made available to small farmers for the production of commodities for the domestic market. Land use changes in the post-sugarcane era have resulted in approximately 14,000 hectares becoming available for possible agricultural diversification. However, the positive impact on domestic food supply that was anticipated has not materialized. A land resource study was conducted in 2012–2014 in the La Gloria and Cedar Hill sections of Caroni (1975) Ltd lands on the Naparima Peneplain, to determine the effect of long-term sugarcane (Saccharum officinarum L.) cultivation on land degradation and soil resilience by comparison with data from historical records and to make recommendations on the way forward. Assessment of land use, chemical and physical soil properties, and extent of soil erosion, comprised the study. The most severe land management factor was identified as chronic and widespread soil erosion, especially in Cedar Hill, with additional problems of subsoil exposure, soil slumping and movement. Soil erosion studies (Universal Soil Loss Equation (USLE)) indicate estimates of 35–74 t/ha affecting 75% of the lands. Historical records on soil physical indices such as bulk density, clay percentage in the profile and available water, revealed that these parameters were stable over the period 1977–2014. However, chemical indices, inclusive of organic carbon, nitrogen and pH, reflect significant decline correlated with reduced soil fertility and land abandonment. While identifying stable soil resilience indices is valuable, the immediate problem is the correction of soil erosion, which results in considerable land abandonment. Therefore, it is recommended that the land be restored to an acceptable level of soil fertility, specifically with respect to its organic matter content, and that infrastructural adjustments be made to stop or greatly minimize soil erosion so that these lands could be used to contribute to national food security as envisaged.


2019 ◽  
Vol 11 (18) ◽  
pp. 5116 ◽  
Author(s):  
Joungyoon Chun ◽  
Choong-Ki Kim ◽  
Wanmo Kang ◽  
Hyemin Park ◽  
Gieun Kim ◽  
...  

In countries and regions where development projects are frequently implemented, there is a significant change in the value of carbon sequestration services according to land use and land cover (LULC) changes. In this study, we analyzed the changes in the carbon sequestration services which occurred due to the LULC changes over a 20 years period (1989–2009) in Korea where local development projects have been active, since 1990s. As a result, the total carbon stocks decreased by about 0.07 billion t C. Significant changes in the carbon stocks mostly occurred in areas where development projects were frequently implemented. The loss of economic value due to the changes in carbon stocks over 20 years was 4.7 trillion won (4159 million USD) when market price of carbon is applied. Therefore, in countries and regions where there is an active development, it is necessary to monitor the land-use changes with high carbon stocks, to reconsider the value of the carbon when making policy decisions which cause LULC changes, and to internalize social costs into the market prices. Especially at a local level, it is necessary to promote management policy based on carbon sequestration services in accordance with local conditions such as size and types of the changes in carbon stocks.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 619
Author(s):  
Daiva Juknelienė ◽  
Vaiva Kazanavičiūtė ◽  
Jolanta Valčiukienė ◽  
Virginija Atkocevičienė ◽  
Gintautas Mozgeris

The spatially explicit assessment of land use and land-use change patterns can identify critical areas and provide insights to improve land management policies and associated decisions. This study mapped the land uses and land-use changes in Lithuanian municipalities since 1971. Additionally, an analysis was conducted of three shorter periods, corresponding to major national land-use policy epochs. Data on land uses, available from the Lithuanian National Forest Inventory (NFI) and collected on an annual basis with the primary objective of conducting greenhouse gas (GHG) accounting and reporting for the land use, land-use change, and forestry (LULUCF) sectors, were explored. The overall trend in Lithuania during the last five decades has been an increase in the area of forest and built-up land and decrease in the area of producing land, meadow/pasture, wetlands, and other land uses. Nevertheless, the development trends for the proportions of producing land and meadow/pasture changed trajectories several times, and the breakpoints were linked with important dates in Lithuanian history and associated with the reorganization of land management and land-use relations. Global Moran’s I statistic and Anselin Local Moran’s I were used to check for global and local patterns in the distribution of land use in Lithuanian municipalities. The proportions of producing land and pasture/meadow remained spatially autocorrelated during the whole period analysed. Local spatial clusters and outliers were identified for all land-use types used in GHG inventories in the LULUCF sector at all the time points analysed. Ordinary least squares (OLS) regression was used to explain the land-use change trends during several historical periods due to differing land management policies, utilizing data from freely available databases as the regressors. The percentage of variance explained by the models ranged from 37 to 65, depending on the land-use type and the period in question.


Sign in / Sign up

Export Citation Format

Share Document