Vermiremediation of engine oil contaminated soil employing indigenous earthworms, Drawida modesta and Lampito mauritii

2022 ◽  
Vol 301 ◽  
pp. 113849
Author(s):  
Murugan Rajadurai ◽  
Natchimuthu Karmegam ◽  
Soundarapandian Kannan ◽  
Ananthanarayanan Yuvaraj ◽  
Ramasundaram Thangaraj
Keyword(s):  
2021 ◽  
Vol 25 (5) ◽  
pp. 877-885
Author(s):  
A.J. Odebode ◽  
K.L. Njoku ◽  
A.A. Adesuyi ◽  
M.O. Akinola

This study was carried out to investigate the phytotoxicity of spent engine oil and palm kernel sludge on seed germination, seedling early growth and survival of sunflower (Helianthus annuus L) and its phytoremediating potential. 8.0 kg topsoil mixed with 2, 4, 6, 8 and 10% (w/v) of spent engine oil and palm kernel sludge, while the control was not mixed with spent oil and sludge (0%). The seeds were sown on these soils and monitored daily. Parameters taken were; plant height, leaf number and stem girth. The result showed that spent engine oil treated plants adversely affected growth compared to palm kernel sludge plants and control which performed better. For plant height, the mean stem girth for control at 2nd week was 0.40±0.05 mm, spent engine oil was 5.96±0.97 palm kernel oil effluent was 14.73±1.16 and at 12th week, control was 1.30±0.05 while for SEO the plant had withered and 124.6±9.02 for POE. Number of leaves at the 12th week was 26.00±2.08 in the control, 8.66±0.66, for spent engine oil at 4%, while for palm oil effluent it was 27.66±0.66, at 4%, concentration respectively. Stem girth at 2 weeks for spent engine oil was 0.19±0.05 at 2%, 0.43±0.03 for palm kernel oil effluent and at the 12th week of planting at 10% concentration was 1.63±0.08 for palm kernel oil effluent, and all plants had withered off for spent engine oil at same concentration at the 12th week. Also, spent engine oil at all concentrations delayed the germination of Helianthus annuus by 2days compared to control. Comparison analysis test showed that growth in untreated plants were significantly higher (p>0.05) than spent oil and palm kernel sludge treated plants. Similar result was observed for leaf number and stem girth which had higher mean value in palm kernel sludge and control compared to spent oil. Sunflower grown in 8% and 10% palm kernel sludge contaminated soil also flowered eight days earlier than control plants, while spent oil treated plant did not. The result shows that sunflower cannot tolerate high (4%, 6%, 8% and 10%) concentrations of spent engine oil in soil compared to palm oil effluent. Therefore, spent engine oil should be properly disposed because of its adverse effect on the growth and yield of sunflower.


2019 ◽  
Vol 12 (1) ◽  
pp. 331
Author(s):  
J. Sivakumar ◽  
C. Shanmuga Sundaram ◽  
L. Krishnasamy ◽  
U. S. Mahadeva Rao

Author(s):  
O. I. Akpokodje ◽  
H. Uguru

This study investigated the impact of petroleum products on the physiochemical properties, heavy metals and THC of soil samples; and their possible phytoremediation. Perforated plastic buckets were filled with 10 kg of sieved virgin topsoil. A mixture of 2 L of spent engine oil, 2 L of kerosene, 2 L of petrol and 2 L of diesel was gradually poured into each bucket and allowed to drain through the soil, once a day for five days, and there after left to stabilize for a period of 21 days. Fluted pumpkin (Telforia Occidentalis) and Okra (Abelmoschus esculentus, Cv. Kirikou) seeds were planted in buckets and closely monitored for 14 weeks. Soil analysis of the virgin topsoil, contaminated soil and remediated soil was done using standard methods. Tests results showed that the petroleum products significantly (p ≤0.05) altered the physicochemical properties, heavy metals and THC of the soil. From the results, the soil porosity decreased from 35% to 14%; specific gravity decreased from 2.34 to 1.35; the soil pH decreased from 7.05 to 5.34; the THC increased from 0,923 mg/kg to 964.35 mg/kg; copper level increased from 4.892 mg/kg to 7.729 mg/kg; the lead content increased from <0.0001 mg/kg to 1.128 mg/kg; while the iron content increased from 1251.2 mg/kg to 1587.9 mg/kg after the contamination. After the 14 weeks phytoremediation period, Telfairia occidentalis was able to degrade the THC in the soil from 964.35 mg/kg to 82.67 mg/kg; while Abelmoschus esculentus degraded the THC in the soil from 964.35 mg/kg to 104 mg/kg. Therefore, due to the harmful effects of the petroleum products on agricultural soils, laws banning their indiscriminate disposal of should be enforced.


2019 ◽  
Vol 10 (08) ◽  
pp. 20203-20211 ◽  
Author(s):  
Mohan Lal Kuri ◽  
Vidhya Kumari ◽  
Shikha Roy

Contamination of soil, water and air due to hydrocarbons are a global issue and bioremediation provides probably the best way to remediate the contaminants. The current study shows the biodegradation of crude oil, diesel and used engine oil by a newly isolated Phenylobacterium korensee from contaminated soil of Bahror, Alwar, Rajasthan. Hydrocarbon degrading strain was screened on BHA (Bushnell Haas Agar) media supplemented with 2T engine oil as sole carbon source. The strain was found to be degrading at 1%, 4% and 10% of used 2T engine oil respectively after 14 days. Degradation was confirmed both gravimetrically and by Gas Chromatography Mass Spectroscopy analysis. The degradation was found very well at long term basis. The optimization of growth also studied at temperature and pH basis also. The significance of the study is that the percentage degradation of the complex petroleum supplements used in the study was found to be far higher than some of the previously reported values and this bacterial strain was firstly found from this contaminated site.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
A. B. Andem ◽  
I. U. Bassey ◽  
C. O. Odey ◽  
O. R. Ibor ◽  
I. O. Agborubere

Microbial biodegradation of engine oil contaminated soil in Calabar Metropolis was studied for a period of six (6) months (January to June, 2017). The soil samples collected were ice boxed and taken to the laboratory for microbial, total hydrocarbon, total organic carbon and other physico-chemical parameters analysis. A total of thirteen (13)  indigenous bacteria species were identified in the soil of the sites analyzed during the study, which includes; Staphylococcus spp., Pseudomonas aeruginosa, Bacillus spp., E. coli, Enterococcus feacalis, Shigella spp., Arthrobacter spp., Alcaligen spp., Acinobacter spp., Azotobacter spp., Aeromonas spp., Xanthomonas spp. and Clostridium spp. The most abundant bacteria in the contaminated site was Staphylococcus spp. (65%) while the least bacteria count in the contaminated site was Clostridium spp. (9%). Staphylococcus spp. was the most abundant indigenous bacterial species and also the most effective biodegradation bacteria. The identified indigenous bacteria utilized the hydrocarbons, multiplied rapidly and then degraded the total hydrocarbon and total organic carbon more in the contaminated site compared to the control site. Site one recorded the highest bacteria count (927) while the least bacteria counts were recorded in the control site (81). The bacteria species showed its degradation and bioremediation capabilities prompting the need for its use in cleaning crude oil contaminated sites, due to the fact that it is cheap and not environmentally harmful.


Sign in / Sign up

Export Citation Format

Share Document