scholarly journals Phenylobacterium Korensee Best Indigenous Petroleum Hydrocarbon Degrading Bacteria Isolated from Contaminated Soil of Bahror, Alwar Region, India

2019 ◽  
Vol 10 (08) ◽  
pp. 20203-20211 ◽  
Author(s):  
Mohan Lal Kuri ◽  
Vidhya Kumari ◽  
Shikha Roy

Contamination of soil, water and air due to hydrocarbons are a global issue and bioremediation provides probably the best way to remediate the contaminants. The current study shows the biodegradation of crude oil, diesel and used engine oil by a newly isolated Phenylobacterium korensee from contaminated soil of Bahror, Alwar, Rajasthan. Hydrocarbon degrading strain was screened on BHA (Bushnell Haas Agar) media supplemented with 2T engine oil as sole carbon source. The strain was found to be degrading at 1%, 4% and 10% of used 2T engine oil respectively after 14 days. Degradation was confirmed both gravimetrically and by Gas Chromatography Mass Spectroscopy analysis. The degradation was found very well at long term basis. The optimization of growth also studied at temperature and pH basis also. The significance of the study is that the percentage degradation of the complex petroleum supplements used in the study was found to be far higher than some of the previously reported values and this bacterial strain was firstly found from this contaminated site.

2018 ◽  
Author(s):  
A. A. Ayandele

AbstractThe potential of six microorganisms (Pseudomonas aeruginosa, Micrococcus sp, Flavobacterium sp, Rhizopus sp, Penicillium sp and Fusarium sp) isolated from hydrocarbon contaminated site were evaluated for their biodegradation ability. The soil samples were contaminated with 5% (w/v) of spent engine oil and the rate of biodegradation of the oil was studied for a period of 10weeks under greenhouse experiment. The total heterotrophic bacteria count (THBC), total hydrocarbon degrading bacteria count (THDBC), physicochemical and heavy metals properties of the soil samples and Total Petroleum Hydrocarbon (TPH) were determined after treatment with test organisms. THBC and THDBC ranged from 0.175 to 0.280 CFUg-1 and 0.47 CFUg-1 respectively for the control plot, while THBC is ranging from 0.197 to 0.275 CFUg-1 and THDBC was 0.180 to 0. 473 CFUg-1 for the contaminated plot. There was a slight increase in the pH value of the contaminated soil sample and the treated soil samples as the experimental weeks increased. The results obtained showed a significant decrease (at p ≤ 0.05) in the nutrients content of the soil samples. There was an increase from 1.09 in the control to 15.5% in the content of organic matter after contamination and from 1.88% to 26.8% in the % of organic matter too. There was a significant reduction (at p ≤ 0.05) in the concentration of Fe, Zn, Pb, Cd, Cu, Cr and Ni after 10 weeks of incubation with the tested organisms. Plant growth in the treated contaminated soil samples ranged from 32.6cm to 38.6cm, while that of the control 1 (Uncontaminated soil) was 51.2cm and 19.7cm high was observed in the Control 2 (contaminated untreated soil) after 22 days of the experiment. The TPH degradation (% loss) ranged from 79.7 to 89. 2% after 10 weeks of treatment. P. aeruginosa had the highest level of degradation (89.2%), while Micrococcus sp and Rhizopus sp had the least degradation at 79.9%.All the microorganisms used in this study had the abilities to remediating soil contaminated with spent engine oil and the remediated soil samples were able to support the growth of Zea mays at 5% (w/v) level of contamination.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
A. B. Andem ◽  
I. U. Bassey ◽  
C. O. Odey ◽  
O. R. Ibor ◽  
I. O. Agborubere

Microbial biodegradation of engine oil contaminated soil in Calabar Metropolis was studied for a period of six (6) months (January to June, 2017). The soil samples collected were ice boxed and taken to the laboratory for microbial, total hydrocarbon, total organic carbon and other physico-chemical parameters analysis. A total of thirteen (13)  indigenous bacteria species were identified in the soil of the sites analyzed during the study, which includes; Staphylococcus spp., Pseudomonas aeruginosa, Bacillus spp., E. coli, Enterococcus feacalis, Shigella spp., Arthrobacter spp., Alcaligen spp., Acinobacter spp., Azotobacter spp., Aeromonas spp., Xanthomonas spp. and Clostridium spp. The most abundant bacteria in the contaminated site was Staphylococcus spp. (65%) while the least bacteria count in the contaminated site was Clostridium spp. (9%). Staphylococcus spp. was the most abundant indigenous bacterial species and also the most effective biodegradation bacteria. The identified indigenous bacteria utilized the hydrocarbons, multiplied rapidly and then degraded the total hydrocarbon and total organic carbon more in the contaminated site compared to the control site. Site one recorded the highest bacteria count (927) while the least bacteria counts were recorded in the control site (81). The bacteria species showed its degradation and bioremediation capabilities prompting the need for its use in cleaning crude oil contaminated sites, due to the fact that it is cheap and not environmentally harmful.


1978 ◽  
Vol 35 (5) ◽  
pp. 573-580 ◽  
Author(s):  
R. R. Colwell ◽  
A. L. Mills ◽  
J. D. Walker ◽  
P. Garcia-Tello ◽  
V. Campos-P.

The grounding of the tanker V.L.C.C. Metula in the Straits of Magellan in August 1974 provided a unique opportunity to study a massive spill in a cold region on a long-term basis. Removal of spilled oil from the Metula was solely by in situ physiochemical and biological mechanisms. Microbiological studies undertaken in May 1976 showed increased heterotrophic bacterial populations at oil-impacted sites. A cold-tolerant population of petroleum degrading bacteria was observed. From biodegradation studies, we concluded that oil degradation under in situ conditions proceeds relatively slowly, with marked persistence of Metula oil in the Straits of Magellan 2 yr after the original spill. Key words: petroleum degradation, oil spills, Straits of Magellan, microbial degradation of oil, Metula


2020 ◽  
Vol 24 (8) ◽  
pp. 1463-1466
Author(s):  
A.A. Enaigbe ◽  
O.S. Imade ◽  
O.A. Akpoka ◽  
E. Ufuah ◽  
O.E. Izevbuwa ◽  
...  

This study was conducted to identify and characterize bacteria capable of degrading spent oil contaminated soil. The physicochemical parameters of used engine oil were analyzed according to existing standards, while the total heterotrophic plate counts (HBC) and hydrocarbon utilizing bacteria counts were ascertained with the pour plate methods using nutrient agar and minimal salt agar (MSA) media respectively. The results indicated a mean total HBC ranging from 2.86 ± 0.08 to 5.76 log10 CFU/g and mean hydrocarbon utilizing bacterial counts from 1.32 ± 0.09 to 3.82 ± 0.25 log10 CFU/g, with samples enriched with Glycine max (Soybean) recorded to have the highest bacterial counts. The phenotypic identification of the hydrocarbon utilizing bacteria as sources of carbon and energy showed the presence of two primary bacterial genera: Bacillus and Micrococcus.However, from the overall 50 counted colonies, the frequency of occurrence for Bacillus was 41 (82 %) whereas, the Micrococcus was (9) 18%. The obtained data, confirmed the breakdown capacity of autochthonous (indigenous) organisms notably; Bacillus in the reduction of pollutants linked with oil spillage. This provides for reliable and promising approach of ameliorating crude oil pollutants and its inherent threats. Keywords: Soil, spent oil, Glycine max, degrading bacteria, isolation and bioremediation


Author(s):  
Olayinka O. Idris ◽  
◽  
Olayinka T. Ogunmefun ◽  
Cinderella N. Tuesimi

One of the biological compounds limiting soil water retention capacity is oil when present due to its hydro-nature. However, some microorganisms exhibit the capacity to degrade oil as a source of carbon, whereby the soil quality is retained and enhanced. Hence, the gravimetric profile of hydrocarbon degrading bacteria and fungi isolated from oil contaminated soil samples was investigated. Soil samples were collected from surface and 10m depth from six different mechanic workshops and generator sites. The pour plate technique was used to isolate the microorganisms. All pure isolates were sub-cultured using Bushnell Haas agar and the isolated bacteria were identified by their morphological and biochemical characteristics. The soil samples pH range was 4.3 - 6.4. Bacteria isolated included Pseudomonas spp., Staphylococcus spp., Microccocus spp., Acinetobacter spp., and Bacillus spp. The fungi isolated included Aspergillus spp., Rhizopus spp., Candida spp., Trichoderma spp. and Penicillium spp. Degradation of kerosene, diesel, crude oil, engine oil, and spent engine oil was allowed using Acinetobacter baumanni, P. aeruginosa, B. subtilis, and S. aureus. Gravimetric analyses were used to determine the percentage of petroleum hydrocarbon degraded by bacterial isolates. The highest percentage of degradation was between P. aeruginosa and B. subtilis. Pseudomonas aeruginosa degraded 97.4% diesel, 88.2% kerosene, 71.3% crude oil, 80.7% engine oil and 78.2% spent engine oil; while Bacillus subtilis degraded 71% diesel, 97% kerosene, 89.6% crude oil, 87% engine oil and 72.6% spent engine oil. This study revealed that bacterial and fungal isolates from oil contaminated soils exhibited the potentials to degrade oil and bioremediation using these microorganisms was possible.


2020 ◽  
Vol 8 (3) ◽  
pp. 369
Author(s):  
Hailian Zang ◽  
Wanjun Liu ◽  
Yi Cheng ◽  
Hailan Wang ◽  
Xuejiao An ◽  
...  

In this study, a novel chlorimuron-ethyl-degrading Pleurotus eryngiu-SMS-CB was successfully constructed for remediation of soil historically contaminated with chlorimuron-ethyl. The P. eryngiu-SMS-CB was prepared using efficient chlorimuron-ethyl-degrading cocultured bacteria, Rhodococcus sp. D310-1 and Enterobacter sp. D310-5, with spent mushroom substrate (SMS, a type of agricultural waste containing laccase) of Pleurotus eryngiu as a carrier. The chlorimuron-ethyl degradation efficiency in historically chlorimuron-ethyl-contaminated soil reached 93.1% at the end of 80 days of treatment with the P. eryngiu-SMS-CB. Although the P. eryngiu-SMS-CB altered the microbial community structure at the beginning of the 80 days, the bacterial population slowly recovered after 180 days; thus, the P. eryngiu-SMS-CB does not have an excessive effect on the long-term microbial community structure of the soil. Pot experiments indicated that contaminated soil remediation with P. eryngiu-SMS-CB reduced the toxic effects of chlorimuron-ethyl on wheat. This paper is the first to attempt to use chlorimuron-ethyl-degrading bacterial strains adhering to P. eryngiu-SMS to remediate historically chlorimuron-ethyl-contaminated soil, and the microbial community structure and P. eryngiu-SMS-CB activity in chlorimuron-ethyl-contaminated soil were traced in situ to evaluate the long-term effects of this remediation.


2014 ◽  
Vol 3 (2) ◽  
pp. 63-75 ◽  
Author(s):  
HY Ismail ◽  
UJJ Ijah ◽  
ML Riskuwa ◽  
II Allamin

Biodegradation of spent engine oil (SEO) by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil) to 76% (contaminated rhizosphere). Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation) after 21 days, whereas the undegraded oil (control) had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2) 2014: 63-75


Author(s):  
Muh'd A. J. ◽  
Sa'adatu A.Y. ◽  
Surayya M. M. ◽  
Sa'adatu M. I. ◽  
Nafisa B. ◽  
...  

Oil is most widely distributed source of energy in the world and large-scaled environmental pollutant. Oil, oil products, and oil containing industrial waste pollution is ranked second place after radioactive pollution on account of their harmful action to ecosystems. Contamination of soil by organic chemicals (mostly hydrocarbons) is prevalent in oil producing and industrialized countries of the world. Biodegradation, a strategy that uses biological means (i.e microbes) to degrade, stabilize and remove soil contaminants is an alternative green technology remediation of hydrocarbon contaminated soil. This study was carried out to isolate and screen Bacteria capable of degrading used engine oil from oil contaminated site. Soil samples were collected from oil contaminated site. Bacterial species were isolated from the collected soil samples by serial dilution and agar methods. Different bacterial species were isolated but only four were oil degrading isolates. The identity of the various genera of bacterial contaminants were determined by a combination of cultural, morphological as well as preliminary biochemical characteristics of the isolates. The four oil degrading bacteria (AJ1, AJ2, AJ3 and AJ4) were preliminarily identified as Bacillus cereus, Pseudomonas aeruginosa, Bacillus subtillis and Micrococcus spp respectively. The degradation ability of the bacterial isolates was screened and maximum degradation was recorded by AJ 5 (Mixed culture) with 66.9 %, followed by Bacillus cereus (50.3 %), Bacillus subtilis (44 %), Pseudomonas aeruginosa (37.9 %) and the least was seen in Micrococcus spp (35.3 %). These findings revealed that some bacteria species are capable of utilizing the oil and used it as sole source of carbon and energy and the mixed consortia of the bacteria have rapid degradation ability. Biological degradation of hydrocarbon contaminated soil offers a better and more environmentally friendly technique that if properly explored can bring our environment into a better place for both plant and animal.


Sign in / Sign up

Export Citation Format

Share Document