Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada

2022 ◽  
Vol 301 ◽  
pp. 113913
Author(s):  
Zheng Wang ◽  
Chunjiang An ◽  
Kenneth Lee ◽  
Edward Owens ◽  
Michel Boufadel ◽  
...  
2021 ◽  
pp. 105623
Author(s):  
Stefan Becker ◽  
Ramesh Prasad Sapkota ◽  
Binod Pokharel ◽  
Loknath Adhikari ◽  
Rudra Prasad Pokhrel ◽  
...  

Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 705-732 ◽  
Author(s):  
F. Gohin

Abstract. Sea surface temperature, chlorophyll, and turbidity are three variables of the coastal environment commonly measured by monitoring networks. The observation networks are often based on coastal stations, which do not provide a sufficient coverage to validate the model outputs or to be used in assimilation over the continental shelf. Conversely, the products derived from satellite reflectance generally show a decreasing quality shoreward, and an assessment of the limitation of these data is required. The annual cycle, mean, and percentile 90 of the chlorophyll concentration derived from MERIS/ESA and MODIS/NASA data processed with a dedicated algorithm have been compared to in-situ observations at twenty-six selected stations from the Mediterranean Sea to the North Sea. Keeping in mind the validation, the forcing, or the assimilation in hydrological, sediment-transport, or ecological models, the non-algal Suspended Particulate Matter (SPM) is also a parameter which is expected from the satellite imagery. However, the monitoring networks measure essentially the turbidity and a consistency between chlorophyll, representative of the phytoplankton biomass, non-algal SPM, and turbidity is required. In this study, we derive the satellite turbidity from chlorophyll and non-algal SPM with a common formula applied to in-situ or satellite observations. The distribution of the satellite-derived turbidity exhibits the same main statistical characteristics as those measured in-situ, which satisfies the first condition to monitor the long-term changes or the large-scale spatial variation over the continental shelf and along the shore. For the first time, climatologies of turbidity, so useful for mapping the environment of the benthic habitats, are proposed from space on areas as different as the southern North Sea or the western Mediterranean Sea, with validation at coastal stations.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2246
Author(s):  
David Janke ◽  
Senthilathiban Swaminathan ◽  
Sabrina Hempel ◽  
Robert Kasper ◽  
Thomas Amon

Agriculture is a major emitter of particulate matter (PM), which causes health problems and can act as a carrier of the pathogen material that spreads diseases. The aim of this study was to investigate an open-source solver that simulates the transport and dispersion of PM for typical agricultural applications. We investigated a coupled Eulerian–Lagrangian solver within the open source software package OpenFOAM. The continuous phase was solved using transient large eddy simulations, where four different subgrid-scale turbulence models and an inflow turbulence generator were tested. The discrete phase was simulated using two different Lagrangian solvers. For the validation case of a turbulent flow of a street canyon, the flowfield could be recaptured very well, with errors of around 5% for the non-equilibrium turbulence models (WALE and dynamicKeq) in the main regions. The inflow turbulence generator could create a stable and accurate boundary layer for the mean vertical velocity and vertical profile of the turbulent Reynolds stresses R11. The validation of the Lagrangian solver showed mixed results, with partly good agreements (simulation results within the measurement uncertainty), and partly high deviations of up to 80% for the concentration of particles. The higher deviations were attributed to an insufficient turbulence regime of the used validation case, which was an experimental chamber. For the simulation case of PM dispersion from manure application on a field, the solver could capture the influence of features such as size and density on the dispersion. The investigated solver is especially useful for further investigations into time-dependent processes in the near-source area of PM sources.


2018 ◽  
Vol 12 (4) ◽  
pp. 907-912 ◽  
Author(s):  
Michał Radwan ◽  
Emila Dziewirska ◽  
Paweł Radwan ◽  
Lucjusz Jakubowski ◽  
Wojciech Hanke ◽  
...  

The present study was designed to address the hypothesis that exposure to specific air pollutants may impact human sperm Y:X chromosome ratio. The study population consisted of 195 men who were attending an infertility clinic for diagnostic purposes and who had normal semen concentration of 15–300 mln/ml (WHO, 2010). Participants represented a subset of men in a multicenter parent study conducted in Poland to evaluate environmental factors and male fertility. Participants were interviewed and provided a semen sample. The Y:X ratio was assessed by fluorescent in situ hybridization (FISH). Air quality data were obtained from the AirBase database. In multivariate analysis the significant reduction was observed in the proportion of Y/X chromosome bearing sperm and exposure to particulate matter >10 μm in aerodynamic diameter PM10 ( p = .009) and particulate matter <10 μm in aerodynamic diameter PM2.5 ( p = .023). The observed effects of a lower Y:X sperm chromosome ratio among men exposed to air pollution support the evidence that the trend of declining sex ratio in several societies over past decades has been due to exposure to air pollution; however due to limited data on this issue, the obtained results should be confirmed in longitudinal studies.


Sign in / Sign up

Export Citation Format

Share Document