Simple and sensitive determination of radium-226 in river water by single column-chromatographic separation coupled to SF-ICP-MS analysis in medium resolution mode

2020 ◽  
Vol 220-221 ◽  
pp. 106305 ◽  
Author(s):  
Guosheng Yang ◽  
Jian Zheng ◽  
Keiko Tagami ◽  
Shigeo Uchida ◽  
Jing Zhang ◽  
...  
2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


2021 ◽  
pp. e00246
Author(s):  
Ana Laura Anibaletto dos Santos ◽  
Anne Caroline Cezimbra da Silva ◽  
Lilian de Lima Feltraco Lizot ◽  
Anelise Schneider ◽  
Roberta Zilles Hahn ◽  
...  

2019 ◽  
Vol 85 (4) ◽  
pp. 110-113
Author(s):  
Olexandr Ponomarenko ◽  
Anatolyi Samchuk ◽  
Kateryna Vovk ◽  
Igor Shvaika ◽  
Ganna Grodzinskaya

The analytical technologies of sample preparation of rocks and mushrooms using the microwave field for the determination of germanium by the method of mass spectrometry with inductively coupled plasma (ICP-MS analysis) have been developed. Germanium is a rare element. Germanium is homology of silicon and carbon. To date, the definition of low content of germanium in geological objects is a rather complex analytical task, which requires its concentration - extraction, co-precipitation, ion exchange. At present, the harmonious combination of the method of natural objects decomposition in the microwave field and germanium determination using ICP-MS analysis is particularly promising. Sample preparation of silicate rocks for ICP-MS determination of germanium was carried out by decomposition in a mixture of hydrofluoric, phosphate and nitric acids (5: 5: 2) in a microwave oven program at 240°C for 30 min. Sample preparation of mushrooms for ICP-MS germanium determination was carried out according to the following scheme. Initially, the dried sample was sealed in the presence of CaO, after dissolving it in a mixture of HNO3+HF+H3PO4 (6:6:1). Ge solution was extracted by Nazarenko V.A. extraction method. The developed analytical schemes have made it possible to significantly reduce the duration and labor intensity of sample preparation. The obtained solutions were analyzed using an inductively coupled plasma mass spectrometer. The developed method for determining germanium by ICP-MS analysis has been successfully tested on standard rock samples. The obtained results are in accordance with the accepted attribute, the relative standard deviation Sr ranges from 0.7-0.9. The data on the content and distribution of germanium in the Boletales fungi are obtained. They indicate wild mushrooms contain high levels of germanium, especially Boletus and Mushroom biospores. These studies are necessary because the essential properties of germanium and its compounds attract special attention of scientists today. Complementary Ge compounds which have hypotensive, bactericidal, antiviral and antitumor effects have already been synthesized.


Sign in / Sign up

Export Citation Format

Share Document