scholarly journals Progressing of Kovacs model for conductivity of graphene-filled products by total contact resistance and actual filler amount

Author(s):  
Yasser Zare ◽  
Kyong Yop Rhee
Keyword(s):  
Author(s):  
A.K. Rai ◽  
A.K. Petford-Long ◽  
A. Ezis ◽  
D.W. Langer

Considerable amount of work has been done in studying the relationship between the contact resistance and the microstructure of the Au-Ge-Ni based ohmic contacts to n-GaAs. It has been found that the lower contact resistivity is due to the presence of Ge rich and Au free regions (good contact area) in contact with GaAs. Thus in order to obtain an ohmic contact with lower contact resistance one should obtain a uniformly alloyed region of good contact areas almost everywhere. This can possibly be accomplished by utilizing various alloying schemes. In this work microstructural characterization, employing TEM techniques, of the sequentially deposited Au-Ge-Ni based ohmic contact to the MODFET device is presented.The substrate used in the present work consists of 1 μm thick buffer layer of GaAs grown on a semi-insulating GaAs substrate followed by a 25 Å spacer layer of undoped AlGaAs.


2003 ◽  
Vol 764 ◽  
Author(s):  
D.N. Zakharov ◽  
Z. Liliental-Weber ◽  
A. Motayed ◽  
S.N. Mohammad

AbstractOhmic Ta/Ti/Ni/Au contacts to n-GaN have been studied using high resolution electron microscopy (HREM), energy dispersive X-ray spectrometry (EDX) and electron energy loss spectrometry (EELS). Two different samples were used: A - annealed at 7500C withcontact resistance 5×10-6 Ω cm2 and B-annealed at 7750C with contact resistance 6×10-5 Ω cm2. Both samples revealed extensive in- and out-diffusion between deposited layers with some consumption ofGaNlayerand formation of TixTa1-xN50 (0<x<25) at the GaN interface. Almost an order of magnitude difference in contact resistances can be attributed to structure and chemical bonding of Ti-O layers formed on the contact surfaces.


2012 ◽  
Vol E95.C (9) ◽  
pp. 1531-1534 ◽  
Author(s):  
Kiyoshi YOSHIDA ◽  
Koichiro SAWA ◽  
Kenji SUZUKI ◽  
Masaaki WATANABE

2020 ◽  
Vol 27 (7) ◽  
pp. 617-627
Author(s):  
Yuanyuan Tian ◽  
Mengjun Zhang ◽  
Junli Wang ◽  
Anbang Liu ◽  
Huaqing Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document