3D printing of piezoelectric barium titanate with high density from milled powders

2020 ◽  
Vol 40 (15) ◽  
pp. 5423-5430 ◽  
Author(s):  
Xiangxia Wei ◽  
Yinhua Liu ◽  
Dongjie Zhao ◽  
Shuzhi Sam Ge
2020 ◽  
pp. 089270572094537
Author(s):  
Ravinder Sharma ◽  
Rupinder Singh ◽  
Ajay Batish

The polyvinylidene difluoride + barium titanate (BaTiO3) +graphene composite (PBGC) is one of the widely explored thermoplastic matrix due to its 4D capabilities. The number of studies has been reported on the process parameters of twin-screw extruder (TSE) setup (as mechanical blending technique) for the development of PBGC in 3D printing applications. But, hitherto, little has been reported on chemical-assisted mechanical blending (CAMB) as solution mixing and melt mixing technique combination for preparation of PBGC. In this work, for preparation of PBGC feedstock filaments, CAMB has been used. Also, the effect of process parameters of TSE on the mechanical, dimensional, morphological, and thermal properties of prepared filament of PBGC have been explored followed by 3D printing. Further, a comparative study has been reported for the properties of prepared filaments with mechanically blended composites. Similarly, the mechanical properties of 3D printed parts of chemically and mechanically blended composites have been compared. The results of tensile testing for CAMB of PBGC show that the filament prepared with 15% BaTiO3 is having maximum peak strength 43.00 MPa and break strength 38.73 MPa. The optical microphotographs of the extruded filaments revealed that the samples prepared at 180°C extruder temperature and 60 r/min screw speed have minimum porosity, as compared to filaments prepared at high extruder temperature. Further, the results of the comparative study revealed that the filaments of CAMB composites show better mechanical properties as compared to the filaments of mechanically mixed composites. However, the dimensional properties were almost similar in both cases. It was also found that the CAMB composites have better properties at low processing temperature, whereas mechanically blended composites show better results at a higher temperature. While comparing 3D printed parts, tensile strength of specimens fabricated from CAMB was more than the mechanically blended PBGC.


Author(s):  
Felicia Stan ◽  
Nicoleta-Violeta Stanciu ◽  
Catalin Fetecau

Abstract This study focuses on 3D printing of multi-walled carbon nanotube/high density polyethylene (MWCNT/HDPE) composites. First, rheological properties of 0.1, 1, and 5 wt.% MWCNT/HDPE composites were investigated to estimate the 3D printability window. Second, filaments with 1.75 mm diameter were fabricated and subsequently extruded by a commercial 3D printer. Finally, the filaments and 3D printed parts were tested to correlate the rheological, mechanical, and electrical properties with processing parameters. Experimental results show that flow behavior of MWCNT/HDPE composites is a critical factor affecting the 3D printability. The shear viscosity exhibits good shear thinning behavior at high shear rates and significantly increases with increasing nanotube loading from 0.1 to 5 wt.%, at low shear rates. Reliable MWCNT/HDPE filaments were obtained with smooth surface finish and good mechanical and electrical properties. The 0.1 and 1 wt.% MWCNT/HDPE filaments exhibit very good printing characteristics. However, under the flow conditions of a standard 0.4-mm nozzle, 3D printing of 5 wt.% MWCNT/HDPE filament can be rather difficult primarily due to high shear viscosity and nozzle clogging. Thus, further investigation is needed to fully optimize the 3D printing of MWCNT/HDPE composites.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maricruz Henkel Carrillo ◽  
Geuntak Lee ◽  
Charles Maniere ◽  
Eugene A. Olevsky

Purpose The purpose of this work is to introduce a novel approach of using additive manufacturing (AM) to produce dense complex ceramic and metallic parts. Powder 3D printing has been gaining popularity due to its ease of use and versatility. However, powder-based methods such as Selective Laser Melting (SLM) and Sintering (SLS), utilizes high power lasers which generate thermal shock conditions in metals and are not ideal for ceramics due to their high melting temperature. Indirect additive manufacturing methods have been explored to address the above issues but have proven to be wasteful and time-consuming. Design/methodology/approach In this work, a novel approach of producing high density net-shaped prototypes using subtractive sintering (SS) and solvent jetting is developed. AM combined with SS (AM-SS) is a process that includes five simple steps. AM-SS can produce repeatable and reliable results as has been shown in this work. Findings As a proof-of-concept, a zirconia dental crown with a high density of 97% is fabricated using this approach. Microstructure and properties of the fabricated components are analyzed. Originality/value A major advantage of this method is the ability to efficiently fabricate high density parts using either metal powder and more importantly, ceramic powder which is traditionally difficult to densify using AM. Additionally, any powder particle size (including nano) and shape can be used which is not the case for traditional powder-based 3D printing.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 165 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Marjo Niemelä ◽  
Sanee Ebrahimzadeh Sepasgozar ◽  
Tin Lai ◽  
Winson Su ◽  
...  

Three-dimensional (3D) printing technologies are transforming the design and manufacture of components and products across many disciplines, but their application in the construction industry is still limited. Material deposition processes can achieve infinite geometries. They have advanced from rapid prototyping and model-scale markets to applications in the fabrication of functional products, large objects, and the construction of full-scale buildings. Many international projects have been realised in recent years, and the construction industry is beginning to make use of such dynamic technologies. Advantages of integrating 3D printing with house construction are significant. They include the capacity for mass customisation of designs and parameters to meet functional and aesthetic purposes, the reduction in construction waste from highly precise placement of materials, and the use of recycled waste products in layer deposition materials. With the ultimate goal of improving construction efficiency and decreasing building costs, the researchers applied Strand 7 Finite Element Analysis software to a numerical model designed for 3D printing a cement mix that incorporates the recycled waste product high-density polyethylene (HDPE). The result: construction of an arched, truss-like roof was found to be structurally feasible in the absence of steel reinforcements, and lab-sized prototypes were manufactured according to the numerical model with 3D printing technology. 3D printing technologies can now be customised to building construction. This paper discusses the applications, advantages, limitations, and future directions of this innovative and viable solution to affordable housing construction.


2020 ◽  
Vol 493 ◽  
pp. 165664 ◽  
Author(s):  
Xiangxia Wei ◽  
Yinhua Liu ◽  
Dongjie Zhao ◽  
Xuewei Mao ◽  
Wanyue Jiang ◽  
...  

2016 ◽  
Vol 25 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Siewhui Chong ◽  
Guan-Ting Pan ◽  
Mohammad Khalid ◽  
Thomas C.-K. Yang ◽  
Shuo-Ting Hung ◽  
...  

Bioprinting ◽  
2021 ◽  
pp. 202-218
Author(s):  
Kenneth Douglas

Abstract: This chapter attempts to peer into the possible future of bioprinting to consider two conceivable directions that bioprinting might take while also contemplating what we may be able to learn about bioprinting’s trajectory by reflecting on another biomedical quest—the twentieth-century’s attempt to conquer polio. In one study that might offer a route for bioprinting, a team created bioconstructs with cell densities approaching that of native tissue (about 108 cells/gram). The group used embedded 3D printing to create a branched, hierarchical network of vascular channels within a large, high cell density bioconstruct and perfused media through the channels that they created using fugitive ink. This was to provide nutrient support for the cells. They also built a high-density cardiac construct in which the cells beat synchronously and showed functional contractility. They quantitatively measured the deformation of the cardiac tissue during contraction.


Sign in / Sign up

Export Citation Format

Share Document