One-step dip-coating method for preparation of ceramic nanofiber membrane with high permeability and low cost

Author(s):  
Yulong Yang ◽  
Wanyi Fu ◽  
Li Chen ◽  
Congyu Hou ◽  
Xixi Chen ◽  
...  
2021 ◽  
Vol 1195 (1) ◽  
pp. 012051
Author(s):  
R B Leron ◽  
L L Tayo ◽  
R R Aquino

Abstract Polylactic acid (PLA) is a biodegradable polymer, which has been widely investigated for use in biomedical and packaging applications due to its excellent biodegradability, biocompatibility, non-toxicity, low cost, good stability, and thermal processability. In this work, PLA was functionalized to improve the membrane’s hydrophilicity and impart antimicrobial activity by simultaneously depositing polydopamine (PDA) and chelating Cu2+ metal ions on the membrane surface. Pristine PLA films were modified via one-pot dip coating method using dopamine-copper (II) solution at different coating times (6, 12, 24 h). FTIR analysis confirmed the deposition of PDA on the modified membranes (PLA/PDA/Cu) as indicated by the presence of catechol and amine moieties on the samples. TGA results revealed the degradation of the same functional groups on PLA/PDA/Cu. The hydropilicity of PLA was significantly reduced upon coating with PDA as indicated by the decrease in the membrane’s contact angle from 96.5 ± 5.3° to 56.2 ± 4.7°. SEM images and EDS results clearly showed that copper particles were deposited on the PLA/PDA/Cu membranes (atomic % ~ up to 0.88) and coating with PDA did not alter the porous structure of the pristine PLA film. Results also demonstrated that the concentration of copper immobilized on the modified membranes increased with longer coating; thus, offering a way of tailoring the metal concentration on the membrane for its specific use. PLA/PDA/Cu membranes showed antibacterial property against the B. subtilis, which could be attributed to the chelation of Cu2+ ions with the catechol moiety of the PDA coating.


RSC Advances ◽  
2016 ◽  
Vol 6 (66) ◽  
pp. 61129-61136 ◽  
Author(s):  
Ankit M. Kansara ◽  
Sanjay G. Chaudhri ◽  
Puyam S. Singh

A facile one-step dip-coating method to prepare recyclable superhydrophobic polypropylene membrane.


2022 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Jacob D. Buchanan ◽  
Vamsi Borra ◽  
Md Maidul Islam ◽  
Daniel G. Georgiev ◽  
Srikanth Itapu

Whiskers are small crystalline growths, which can grow from certain metals or alloys. Reaching up to several millimeters long, whiskers have the potential to cause device failures due to short circuits and contamination by debris. Tin (Sn) is one such metal that is particularly prone to whisker development. Until the 2006 RoHS Initiative, lead (Pb) was added to tin in small amounts (up to 2%) to greatly reduce the growth of whiskers. Since then, however, industry has switched to lead-free tin solders and coatings, and the issue of whisker growth on tin has attracted new interest. A reactive-sputtering-deposited nickel oxide sublayer was shown recently to strongly suppress the growth of whiskers from an overlaying tin layer. This paper reports on using nickel oxide films, obtained by a sol–gel dip coating method, as whisker suppressing sublayers. The proposed method is simple, low-cost, and can easily be scaled up for manufacturing purposes. The properties of the sol–gel deposited nickel oxide film were examined using SEM, EDS, and Raman spectroscopy. Samples containing the nickel oxide sublayer were observed through SEM periodically over several months to examine the surfaces for whisker development, and the results show that such layers can be very effective in suppressing whisker growth.


Author(s):  
Xinyu Tan ◽  
Zhengtao Huang ◽  
Lihua Jiang ◽  
Ting Xiao ◽  
Yunkuan Wang ◽  
...  

AbstractSuperhydrophobic coatings have been regarded as potential promising solutions to many problems, e.g., ice accumulation in the winter seasons. To be practically useful and economically attractive, it is necessary to fabricate such coatings using facile methods, i.e., with minimal steps and low cost. In this work, a polyvinylidene fluoride (PVDF)/SiO2 coating is successfully prepared with a simple dip coating method. It shows impressive superhydrophobic properties with a large water contact angle (WCA) of 159° and a small sliding angle (SA) of less than 3°. Meanwhile, its superhydrophobic properties are robust in a large temperature range of – 30 to 350 °C and in various environments. Moreover, it shows remarkable anti-icing properties by delaying the freezing time (4 times) and reducing (40%) the adhesion of the ice on the substrate. Therefore, this work has displayed a promising approach for fabricating superhydrophobic coatings towards anti-icing applications.


2007 ◽  
Vol 280-283 ◽  
pp. 557-560
Author(s):  
Yang Song ◽  
Yong Huang ◽  
Zheng He Han

Preparing Superconducting Bi-2223 films by dip-coating method is innovative and valuable. The advantages of this technique are low cost and precise stoichiometric. Controlling the evaporation of Pb efficiently can improve the formation of Bi-2223 phase. Textured BSCCO superconductors are studied and a mechanism for alignment of BSCCO grains addressed.


2015 ◽  
Vol 14 (3) ◽  
pp. 591-596 ◽  
Author(s):  
Marcin Janczarek ◽  
Anna Zielińska-Jurek ◽  
Irmina Markowska ◽  
Jan Hupka

Thin films of Cu–TiO2 with high transparency were prepared using a low-cost dip-coating method. The visible light activity of Cu–TiO2 in the aqueous solution was confirmed in relation to model organic compounds.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuyun Yang ◽  
Zizhong Shi ◽  
Xiufang Cui ◽  
Yuejun Liu ◽  
Guo Jin ◽  
...  

Iron and magnesium are being considered as promising candidates for biodegradable materials in medical applications, both materials having their specific advantages and challenges. A hybrid of metallic iron and magnesium in a layered composite is studied in the present work, to combine the merits of both metals. A single-step dip-coating method was employed to prepare the layered composite material. Morphology, composition, crystal structure and corrosion behavior of the Mg/Fe sheet were assessed by SEM, EDX, XRD, and electrochemical measurements. The Mg/Fe layered composite sheet is composed of the magnesium substrate, a 1–2 µm metallic iron coating, and a pompon-like Mg(OH)2/MgO top layer. Long-term open-circuit potential measurements revealed that the Mg/Fe sheet samples exhibit a “self-healing” effect in Dulbecco’s modified Eagle’s medium.


2020 ◽  
Vol 10 (11) ◽  
pp. 3689
Author(s):  
Ze Yu ◽  
Wenxuan Wang ◽  
He Gao ◽  
Daxin Liang

In order to improve the adsorption efficiency of biochar in water treatment, biochar–graphene (BG) composites were prepared by the one-step dip coating method and applied to remove phthalates from water. Firstly, the materials and equipment needed for the experiment are introduced. The steps of preparing graphene oxide (GO) by the improved Hummers method and BG composites by one-step dip coating are discussed. Then, the morphology characterization, adsorption performance measurement, and isothermal model of BG composites are introduced. Finally, the structure characterization, adsorption kinetics, and adsorption isotherms of BG composites are analyzed. The results show that the properties of biochar could be changed by one-step dip coating, and the biochar could form composites with graphene. Compared with biochar, biochar–graphene composites have greater surface area and porosity. When the pyrolysis temperature was 600 °C, the specific surface area of biochar was 8.4 m2g−1, and the specific surface area of the biochar–graphene composite was 221.3 m2g−1. When the temperature was 300 °C, the specific surface area of biochar was 11.01 m2g−1, and the specific surface area of biochar–graphene composite was 251.82 m2g−1. The formation of graphene on the surface of biochar can increase the stability of the composite and acts as a very high potential active site. The porous structure and surface properties of biochar–graphene composites regulate the adsorption rate of pollutant molecules, thereby improving the adsorption performance. When the adsorption equilibrium was reached, the adsorption effect of phthalate esters on the biochar/graphene composite at the pyrolysis temperature of 600 °C was the best, and the adsorption capacity of Dimethyl phthalate (DMP)was 35.2 mg/g, that of Diethyl phthalate (DEP) was 26.4 mg/g, and that of Dibutyl phthalate (DBP) was 25.1 mg/g. The adsorption effect of DMP was the best. The results of the isotherm study indicate that the adsorption of phthalates by BG composites has great potential, which provides a good theoretical basis for the application of BG composites in environmental protection in China.


RSC Advances ◽  
2018 ◽  
Vol 8 (29) ◽  
pp. 16251-16259 ◽  
Author(s):  
Zhonglin Luo ◽  
Yan Li ◽  
Cong Duan ◽  
Biaobing Wang

The preparation of a superhydrophobic PDMS/SiO2/PVDF/KH-550 mesh and its multiple applications.


Sign in / Sign up

Export Citation Format

Share Document