scholarly journals Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice

2021 ◽  
Vol 79 ◽  
pp. 104394
Author(s):  
Xiaoling Zhou ◽  
Xingwei Xiang ◽  
Yufang Zhou ◽  
Tianyi Zhou ◽  
Shanggui Deng ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2309 ◽  
Author(s):  
Mohamed A. Morsy ◽  
Sumeet Gupta ◽  
Anroop B. Nair ◽  
Katharigatta N. Venugopala ◽  
Khaled Greish ◽  
...  

Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Guosheng Lin ◽  
Minyao Li ◽  
Nan Xu ◽  
Xiaoli Wu ◽  
Jingjing Liu ◽  
...  

Aim of the Study. This study is aimed at exploring the effects and pharmacological mechanisms of the extracts from the Heritiera littoralis fruit (EFH) on dextran sulfate sodium- (DSS-) induced ulcerative colitis (UC) in mice. Materials and Methods. The chemical compositions of EFH were identified using LC-ESI-MS. The mice with 3% DSS-induced UC were administered EFH (200, 400, and 800 mg/kg), sulfasalazine (SASP, 200 mg/kg), and azathioprine (AZA, 13 mg/kg) for 10 days via daily gavage. The colonic inflammation was evaluated by the disease activity index (DAI), colonic length, histological scores, and levels of inflammatory mediators. The gut microbiota was characterized by 16S rRNA gene sequencing and analysis. Results. LC-ESI-MS analysis showed that EFH was rich in alkaloids and flavones. The results indicated that EFH significantly improved the DAI score, relieved colon shortening, and repaired pathological colonic variations in colitis. In addition, proteins in the NF-κB pathway were significantly inhibited by EFH. Furthermore, EFH recovered the diversity and balance of the gut microbiota. Conclusions. EFH has protective effects against DSS-induced colitis by keeping the balance of the gut microbiota and suppressing the NF-κB pathway.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Dewei Sun ◽  
Liang Zhang ◽  
Hongjian Chen ◽  
Rong Feng ◽  
Peirang Cao ◽  
...  

2015 ◽  
Vol 6 (11) ◽  
pp. 3454-3463 ◽  
Author(s):  
Bo Liu ◽  
Qinlu Lin ◽  
Tao Yang ◽  
Linna Zeng ◽  
Limin Shi ◽  
...  

Oral administration of oat β-glucan ameliorates DSS induced colitis in mice by decreasing the expression of inflammatory cytokines TNF-α, IL-1β, IL-6 and iNOS.


2021 ◽  
Vol 35 (2) ◽  
pp. 64-70
Author(s):  
Hyoung-Kwon Jo ◽  
Dae-Sung Kim ◽  
Seong-Wan Cho ◽  
Na-Rae Shin ◽  
Young Mi Park ◽  
...  

2021 ◽  
Vol 49 (03) ◽  
pp. 661-676
Author(s):  
Yuanbing Zhu ◽  
Zhiqi Zhuang ◽  
Qiaofeng Wu ◽  
Sirui Lin ◽  
Na Zhao ◽  
...  

Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2797
Author(s):  
Zhenxiao Zheng ◽  
Kai Zhu ◽  
Zhiyuan Dai

Making Antarctic krill oil into emulsion is a good way to utilize Antarctic krill, but proliferation of microorganisms cannot be ignored. H2O2 is widely used in the sterilization of liquid food since its decomposition products are environmentally friendly, although residual H2O2 should be removed for food safety. Adding catalase (CAT) is an effective means to do this. However, the enzyme activity center of CAT is the iron porphyrin group, which has the risk of accelerating lipid oxidation in the oil emulsion. Therefore, we hypothesized that CAT might not be suitable for the removal of H2O2 in Antarctic krill oil emulsion. In this paper, Antarctic krill oil emulsion was prepared, and then the effect of CAT on the emulsion was studied through visual observation, microscopic morphology observation, turbidity and stability, particle size, and ζ-potential; finally, the mechanism of CAT destroying the emulsion was explored from the perspective of lipid oxidation. The results showed that a stable Antarctic krill emulsion was prepared using Tween-80 as the emulsifier, with the oil concentration of 1% (v/v) and the ratio of surfactant to oil phase of 1:5 (v/v). The emulsion treated with CAT had undergone demulsification, stratification, and coagulation after 2 days of incubation, while the emulsion treated with superoxide dismutase (SOD) and bovine serum albumin (BSA) changed little. In addition, the thiobarbituric acid reactive substances (TBARS) value and the content of hydroxyl radicals in the CAT group increased significantly. The preliminary research results indicated that the effect of CAT on the emulsion related to the lipid oxidation caused by the iron porphyrin group at the center of the enzyme activity. All these results indicated that CAT was not suitable for the removal of residual H2O2 in Antarctic krill oil emulsion. Moreover, it is helpful to avoid the contact of Antarctic krill oil emulsion and CAT during the processing of the krill.


Sign in / Sign up

Export Citation Format

Share Document