scholarly journals Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)

2021 ◽  
Vol 87 ◽  
pp. 104820
Author(s):  
Yan Wang ◽  
Yafei Liu ◽  
Ives Ivusic Polic ◽  
Ajila Chandran Matheyambath ◽  
Gisèle LaPointe
2019 ◽  
Vol 120 ◽  
pp. 595-602 ◽  
Author(s):  
Fernanda Bianchi ◽  
Nadja Larsen ◽  
Thatiana de Mello Tieghi ◽  
Maria Angela T. Adorno ◽  
Susana M.I. Saad ◽  
...  

2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Françoise Wilhelmi de Toledo

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2021 ◽  
Vol 84 ◽  
pp. 104596
Author(s):  
Benjamín Vázquez-Rodríguez ◽  
Liliana Santos-Zea ◽  
Erick Heredia-Olea ◽  
Laura Acevedo-Pacheco ◽  
Arlette Santacruz ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1763
Author(s):  
Veronica Di Cristanziano ◽  
Fedja Farowski ◽  
Federica Berrilli ◽  
Maristella Santoro ◽  
David Di Cave ◽  
...  

Background: The human gut microbiota is a microbial ecosystem contributing to the maintenance of host health with functions related to immune and metabolic aspects. Relations between microbiota and enteric pathogens in sub-Saharan Africa are scarcely investigated. The present study explored gut microbiota composition associated to the presence of common enteric pathogens and commensal microorganisms, e.g., Blastocystis and Entamoeba species, in children and adults from semi-urban and non-urban localities in Côte d’Ivoire. Methods: Seventy-six stool samples were analyzed for microbiota composition by 16S rRDNA sequencing. The presence of adeno-, entero-, parechoviruses, bacterial and protozoal pathogens, Blastocystis, and commensal Entamoeba species, was analyzed by different molecular assays. Results: Twelve individuals resulted negative for any tested microorganisms, 64 subjects were positive for one or more microorganisms. Adenovirus, enterovirus, enterotoxigenic Escherichia coli (ETEC), and Blastocystis were frequently detected. Conclusions: The bacterial composition driven by Prevotellaceae and Ruminococcaceae confirmed the biotype related to the traditional dietary and cooking practices in low-income countries. Clear separation in UniFrac distance in subjects co-harboring Entamoeba hartmanni and Blastocystis was evidenced. Alpha diversity variation in negative control group versus only Blastocystis positive suggested its possible regulatory contribution on intestinal microbiota. Pathogenic bacteria and virus did not affect the positive outcome of co-harbored Blastocystis.


2021 ◽  
Vol 70 (7) ◽  
pp. 5-10
Author(s):  
K.A. Aitbaev ◽  
I.T. Murkamilov ◽  
V.V. Fomin ◽  
Zh.A. Murkamilova ◽  
I.O. Kudaibergenova ◽  
...  

Nutrients ◽  
2017 ◽  
Vol 9 (6) ◽  
pp. 533 ◽  
Author(s):  
Athanasios Koutsos ◽  
Maria Lima ◽  
Lorenza Conterno ◽  
Mattia Gasperotti ◽  
Martina Bianchi ◽  
...  

MedPharmRes ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 22-24
Author(s):  
Binh Nguyen

It was previously thought that the establishment of the gut microbiota was completed within the first two years of life, and this community maintains fairly stable throughout the adult lifetime thereafter. However, recent evidence shows that the gut microbiota composition is constantly changing in the gut environment and is heavily influenced by diet. The individual differences responding to diets would root on the fluctuations of gut microbiota if dietary fluctuations affect the composition of gut microbiota so significantly.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kimberly A. Dill-McFarland ◽  
Zheng-Zheng Tang ◽  
Julia H. Kemis ◽  
Robert L. Kerby ◽  
Guanhua Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document