Selection of optimum sorption kinetics: Comparison of linear and non-linear method

2006 ◽  
Vol 134 (1-3) ◽  
pp. 277-279 ◽  
Author(s):  
K. Vasanth Kumar ◽  
S. Sivanesan
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4236 ◽  
Author(s):  
Hugo Siqueira ◽  
Mariana Macedo ◽  
Yara de Souza Tadano ◽  
Thiago Antonini Alves ◽  
Sergio L. Stevan ◽  
...  

The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 940
Author(s):  
Zijing Wang ◽  
Mihai-Alin Badiu ◽  
Justin P. Coon

The age of information (AoI) has been widely used to quantify the information freshness in real-time status update systems. As the AoI is independent of the inherent property of the source data and the context, we introduce a mutual information-based value of information (VoI) framework for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their relationship, and find logarithmic, exponential and linear dependencies between the two in three different regimes. This gives the formal justification for the selection of non-linear AoI functions previously reported in other works. Moreover, we study the statistical properties of the VoI in the example of a queue model, deriving its distribution functions and moments. The lower and upper bounds of the average VoI are also analysed, which can be used for the design and optimisation of freshness-aware networks. Numerical results are presented and further show that, compared with the traditional linear age and some basic non-linear age functions, the proposed VoI framework is more general and suitable for various contexts.


1967 ◽  
Vol 29 (2) ◽  
pp. 317-336 ◽  
Author(s):  
Bruce E. Larock ◽  
Robert L. Street

An analysis is made of the effect of a transverse gravity field on a two-dimensional fully cavitating flow past a flat-plate hydrofoil. Under the assumption that the flow is both irrotational and incompressible, a non-linear method is developed by using conformal mapping and the solution to a mixed-boundary-value problem in an auxiliary half plane. A new cavity model, proposed by Tulin (1964a), is employed. The solution to the gravity-affected case was found by iteration; the non-gravity solution was used as the initial trial of a rapidly convergent process. The theory indicates that the lift and cavity size are reduced by the gravity field. Typical results are presented and compared to Parkin's (1957) linear theory.


2021 ◽  
Vol 12 (1) ◽  
pp. 8-20
Author(s):  
E. A. Kurganov ◽  

An S-box is a non-linear transformation that takes n bits as input and returns m bits. This transformation is most easily represented as a nm lookup table. Most often, only balanced S-boxes are used in cryptography. This means that the number of input bits is equal to the number of output bits. The S-box is an important part of most symmetric ciphers. The selection of the correct substitution makes the link between the key and the ciphertext more complex (non-linear), which makes it much more difficult to hack. This paper deals with a hardware implementation of S-boxes. This implementation can be realized by using logical conjunction, disjunction, negation and delay blocks. The main indicator of productivity of such implementations is a circuit depth, namely the maximum length of a simple way of the circuit and a circuit complexity, namely the quantity of logic elements (negation elements are not taken into account). The article considers the standard synthesis methods (based on DNF, Shannon, Lupanov), proposes a new algorithm to minimize the complexity of an arbitrary Boolean functions system and a way to reduce the complexity of the circuit obtained after simplification by the ESPRESSO algorithm of DNF of the function related to the output of the S-box. To compare the efficiency of the methods, the C++ program was created that generates a circuit in the Verilog language. The estimates of depth and complexity are obtained for the schemes produced as a result of the programs operation. The article ends with a comparison of the efficiency of S-box schemes of known cryptographic standards obtained as the output of the program (with each other and with the result of the Logic Friday program).


Sign in / Sign up

Export Citation Format

Share Document