Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite

2014 ◽  
Vol 270 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Fang ◽  
Lingtao Kong ◽  
Jiarui Huang ◽  
Shibiao Wu ◽  
Kaisheng Zhang ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


Carbon ◽  
2015 ◽  
Vol 89 ◽  
pp. 74-81 ◽  
Author(s):  
Chunmei Li ◽  
Lingyun Li ◽  
Lixiang Sun ◽  
Zhiguo Pei ◽  
Jieli Xie ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 2121-2124 ◽  
Author(s):  
Ling Ling Luo ◽  
Xing Xing Gu ◽  
Jun Wu ◽  
Shu Xian Zhong ◽  
Jian Rong Chen

Graphene for its unique physical structure, excellent mechanical, electrical and physical properties has been widely applied in nanoelectronics, microelectronics, energy storage material, composite materials and so on. In recent years, many researchers found graphene have outstanding adsorption capacity of contaminants in aqueous solution due to its high specific surface area. This paper summarized the graphene, graphene oxide and functionalized graphene removing various heavy metals in waste water.


2016 ◽  
Vol 18 (17) ◽  
pp. 12312-12322 ◽  
Author(s):  
Jing-Jing Huang ◽  
Yong J. Yuan

This work involved the study of sedimentation of graphene oxide (GO) in aqueous solution by gradient differential centrifugation.


2017 ◽  
Vol 198 ◽  
pp. 397-407 ◽  
Author(s):  
Tomoaki Takayama ◽  
Ko Sato ◽  
Takehiro Fujimura ◽  
Yuki Kojima ◽  
Akihide Iwase ◽  
...  

CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.


Sign in / Sign up

Export Citation Format

Share Document