Mechanisms, kinetics and eco-toxicity assessment of singlet oxygen, sulfate and hydroxyl radicals-initiated degradation of fenpiclonil in aquatic environments

2020 ◽  
pp. 124505
Author(s):  
Jiaoxue Yang ◽  
Guochun Lv ◽  
Zehua Wang ◽  
Xiaomin Sun ◽  
Jian Gao
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Guerreiro ◽  
Nicholas Chatterton ◽  
Eleanor M. Crabb ◽  
Jon P. Golding

Abstract Background A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.


Chemosphere ◽  
2011 ◽  
Vol 85 (4) ◽  
pp. 630-636 ◽  
Author(s):  
Christian Coelho ◽  
Luciano Cavani ◽  
Alexandra ter Halle ◽  
Ghislain Guyot ◽  
Claudio Ciavatta ◽  
...  

2014 ◽  
Vol 13 (11) ◽  
pp. 1541-1548 ◽  
Author(s):  
Kamola R. Kasimova ◽  
Magesh Sadasivam ◽  
Giacomo Landi ◽  
Tadeusz Sarna ◽  
Michael R. Hamblin

Antimicrobial photodynamic inactivation (APDI) using six different phenothiazinium dyes is mediated by singlet oxygen (quenched by azide) and hydroxyl radicals (potentiated by azide) depending on Gram-classification of the bacteria and whether the dye is washed from the cells.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 455E-455
Author(s):  
Shiow Y. Wang ◽  
Hongjun Jiao

The effect of blackberries (Rubus sp.) genotypes on antioxidant activities against superoxide radicals (O2–), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O,), was evaluated. The results were expressed as percent inhibition of active oxygen species production in the presence of fruit juice. The active oxygen radical absorbance capacity (ORAC) value referred to the net protection in the presence of fruit juice, and was expressed as micromoles of α-tocopherol, ascorbate, α-tocopherol, and β-carotene equivalents per 10 g of fresh weight for O2–, H2O2, OH, and O2, respectively. Among the different cultivars, juice of Hull' blackberry had the highest oxygen species, superoxide radicals (O2–), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O2,) scavenging capacity. Different antioxidants have their functional scavenging capacity against active oxygen species. There were interesting and marked differences among the different antioxidants in their abilities to inhibit the different active oxygen species. β-carotene had by far the highest scavenging activity against O2– but had absolutely no effect on H2O2. Ascorbic acid was the best at inhibiting H2O2 free radical activity. For OH, there was a wide range of scavenging capacities with α-tocopherol the highest and ascorbic acid the lowest. Glutathione had higher O2– scavenging capacity compared to the other antioxidants.


2017 ◽  
Vol 60 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Akimitsu Miyaji ◽  
Yu Gabe ◽  
Masahiro Kohno ◽  
Toshihide Baba

2014 ◽  
Vol 49 ◽  
pp. 360-370 ◽  
Author(s):  
Yanpeng Gao ◽  
Yuemeng Ji ◽  
Guiying Li ◽  
Taicheng An

Sign in / Sign up

Export Citation Format

Share Document