scholarly journals A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Guerreiro ◽  
Nicholas Chatterton ◽  
Eleanor M. Crabb ◽  
Jon P. Golding

Abstract Background A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1270
Author(s):  
Daniele Del Buono ◽  
Alessandro Di Michele ◽  
Ferdinando Costantino ◽  
Marco Trevisan ◽  
Luigi Lucini

The need to increase crop productivity and resistance directs interest in nanotechnology. Indeed, biogenic metal oxide nanoparticles can promote beneficial effects in plants, while their synthesis avoids the environmental impacts of conventional synthetic procedures. In this context, this research aimed to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) using, for the first time, an extract of a wild and spontaneous aquatic species, Lemna minor (duckweed). The effectiveness of this biogenic synthesis was evidenced for comparison with non-biogenic ZnO-NPs (obtained without using the plant extract), which have been synthesized in this research. XRD (X-ray diffraction), FE-SEM (field emission gun electron scanning microscopy), EDX (energy dispersive x-ray spectroscopy), TEM (transmission electron microscope) and UV-vis (ultraviolet-visible spectrophotometry) showed the biogenic approach effectiveness. The duckweed extract was subjected to UHPLC-ESI/QTOF-MS (ultra high-pressure liquid chromatography quadrupole time of flight mass spectrometry) phenolic profiling. This untargeted characterization highlighted a high and chemically diverse content in the duckweed extract of compounds potentially implicated in nanoparticulation. From an application standpoint, the effect of biogenic nanoparticles was investigated on some traits of maize subjected to seed priming with a wide range of biogenic ZnO-NPs concentrations. Inductive effects on the shoot and root biomass development were ascertained concerning the applied dosage. Furthermore, the biogenic ZnO-NPs stimulated the content of chlorophylls, carotenoids, and anthocyanin. Finally, the study of malondialdehyde content (MDA) as a marker of the oxidative status further highlighted the beneficial and positive action of the biogenic ZnO-NPs on maize.


2018 ◽  
Vol 24 (8) ◽  
pp. 896-903 ◽  
Author(s):  
Usha Kadiyala ◽  
Nicholas A. Kotov ◽  
J. Scott VanEpps

Metal oxide nanoparticles (MO-NPs) are known to effectively inhibit the growth of a wide range of Gram-positive and Gram-negative bacteria. They have emerged as promising candidates to challenge the rising global issue of antimicrobial resistance. However, a comprehensive understanding of their mechanism of action and identifying the most promising NP materials for future clinical translation remain a major challenge due to variations in NP preparation and testing methods. With various types of MO-NPs being rapidly developed, a robust, standardized, in vitro assessment protocol for evaluating the antibacterial potency and efficiency of these NPs is needed. Calculating the number of NPs that actively interact with each bacterial cell is critical for assessing the dose response for toxicity. Here we discuss methods to evaluate MO-NPs antibacterial efficiency with focus on issues related to NPs in these assays. We also highlight sources of experimental variability including NP preparation, initial bacterial concentration, bacterial strains tested, culture microenvironment, and reported dose.


2012 ◽  
Vol 506 ◽  
pp. 234-237
Author(s):  
N. Lertcumfu ◽  
P. Jarupoom ◽  
Kamonpan Pengpat ◽  
T. Tunkasiri ◽  
Gobwute Rujijanagul

In the present study the effects of metal oxide nanoparticles addition on the microstructure, physical properties of the HA ceramics were investigated. Many techniques were used for the analysis. X-ray diffraction analysis revealed a co-exist phases between hydroxyapatite and tricalcium phosphate in the sintered samples. Addition of NiO resulted an increase in the lattice parameters of the tricalcium phosphates due to the bigger radii atom (Ni) substitution for the small radii atom (Ca). Energy dispersive spectroscopy suggested that most of NiO particles located at grain boundary, resulting in an improvement of hardness of the samples


2011 ◽  
Vol 1306 ◽  
Author(s):  
Anna Corrias ◽  
Danilo Loche ◽  
Maria F. Casula

ABSTRACTAerogels are regarded as ideal candidates for the design of functional nanocomposites containing supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading, to provide nanoparticle accessibility and/or to prevent nanoparticle agglomeration, as required to supply their specific functionalities.The preparation of highly porous nanocomposite aerogels containing magnetic metal, alloy or metal oxide nanoparticles dispersed into amorphous silica, with high purity and homogeneity, was successfully achieved by a novel sol-gel procedure involving urea-assisted co-gelation of the precursor phases. This method allows fast gelation, giving rise to aerogels with 97% porosity, and it is very versatile allowing to vary composition, loading and average size of the nanoparticles.The characterization of the morphological and structural features of the nanocomposite aerogels is carried out using different techniques, such as X-ray diffraction, Transmission Electron Microscopy and X-ray Absorption Spectroscopy. The characterization of the magnetic properties is carried out by SQUID magnetometry.


2020 ◽  
Vol 13 (4) ◽  
pp. 1645-1652
Author(s):  
Richa Sharma ◽  
Suresh Kumar ◽  
Prem Singh ◽  
Shikha Kapila

Metal oxide nanoparticles gain attention in the field of biomedical applications because of their unique physico-chemical properties and emerging out as an alternative to antibiotics. The major cause of most of the human diseases is the bacterial infection. However, antibiotics used in the cure show other complications to human health. Therefore, the purpose of the present work is to investigate the antibacterial properties of ZnO/Ag nanoparticles on the test bacterial strains, Escherichia coli (E. coli). ZnO/Ag nanoparticles are synthesized using surfactant mediated route in a single step and double step procedure. Here, CTAB and hydrazine hydrate used as a surfactant and reducing agents respectively. The synthesized nanoparticles are characterized by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy for structure, morphology and compositional properties. The antibacterial activities of these nanoparticles are also studied using the agar-well diffusion technique. The result analysis shows that synthesized nanopaticles are spherical in shape, having particles of the size 6 nm and 13 nm in the desired elemental composition. ZnO/Ag nanoparticles possessed a strong antibacterial effect against E. coli. This study signifies that ZnO/Ag metal oxide nanoparticles exhibit stronger antimicrobial activity against pathogen bacteria E. coli which may works effectively on the antibacterial and antifungal infections.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1790 ◽  
Author(s):  
Ana Maria Diez-Pascual

Thermosetting polymers derived from vegetable oils (VOs) exhibit a wide range of outstanding properties that make them suitable for coatings, paints, adhesives, food packaging, and other industrial appliances. In addition, some of them show remarkable antimicrobial activity. Nonetheless, the antibacterial properties of these materials can be significantly improved via incorporation of very small amounts of metal oxide nanoparticles (MO-NPs) such as TiO2, ZnO, CuO, or Fe3O4. The antimicrobial efficiency of these NPs correlates with their structural properties like size, shape, and mainly on their concentration and degree of functionalization. Owing to their nanoscale dimensions, high specific surface area and tailorable surface chemistry, MO-NPs can discriminate bacterial cells from mammalian ones, offering long-term antibacterial action. MO-NPs provoke bacterial toxicity through generation of reactive oxygen species (ROS) that can target physical structures, metabolic paths, as well as DNA synthesis, thereby leading to cell decease. Furthermore, other modes of action—including lipid peroxidation, cell membrane lysis, redox reactions at the NP–cell interface, bacterial phagocytosis, etc.—have been reported. In this work, a brief description of current literature on the antimicrobial effect of VO-based thermosetting polymers incorporating MO-NPs is provided. Specifically, the preparation of the nanocomposites, their morphology, and antibacterial properties are comparatively discussed. A critical analysis of the current state-of-art on these nanomaterials improves our understanding to overcome antibiotic resistance and offers alternatives to struggle bacterial infections in public places.


2019 ◽  
Vol 6 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Asli Baysal ◽  
Hasan Saygin ◽  
Gul Sirin Ustabasi

Background: The enormous properties of metal oxide nanoparticles make it possible to use these nanoparticles in a wide range of products. As their usage and application continue to expand, environmental health concerns have been raised. In order to understand the behavior and effect of metal oxide nanoparticles in the environment, comprehensive and comparable physicochemical and toxicological data on the environmental matrix are required. However, the behavior and effect of nanoparticles in the real environmental matrix, e.g. sea water, are still unknown. Methods: In this study, the effects of zinc oxide (ZnO) and titanium dioxide (TiO2 ) nanoparticles on the bacteria (gram positive-Bacillus subtilis, Staphylococcus aureus/gram-negative Escherichia coli, and Pseudomonas aeruginosa) in sea water were investigated. Furthermore, to better understand the behavior of the toxicity, surface chemistry, sedimentation, dissolution, particle size, and zeta potential of the nanoparticles dispersed in the sea water matrices were investigated using Fourier-transform infrared spectrometry (FTIR), ultraviolet–visible (UV-VIS) spectrophotometry, graphite furnace atomic absorption spectrometer (GFAAS), and dynamic light scattering (DLS), respectively. Results: The environmental matrix had a significant influence on physicochemical behavior of the tested nanoparticles. Besides, the inhibition of tested bacteria was observed against ZnO and TiO2 nanoparticles in the presence of sea water, while there was no inhibition in the controlled condition. Conclusion: The results demonstrate that surface chemistry with exposure to the sea water can have a significant role on the physicochemical properties of nanoparticles and their toxicity.


Sign in / Sign up

Export Citation Format

Share Document