A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies

2020 ◽  
pp. 124686
Author(s):  
Nitin Kumar Singh ◽  
Gaurav Sanghvi ◽  
Manish Yadav ◽  
Hirendrasinh Padhiyar ◽  
Arti Thanki
2019 ◽  
pp. 027836491989376
Author(s):  
Wesley Roozing ◽  
Zeyu Ren ◽  
Nikos G Tsagarakis

We present the development, modeling, and control of a three-degree-of-freedom compliantly actuated leg called the eLeg, which employs both series- and parallel-elastic actuation as well as a bio-inspired biarticular tendon. The leg can be reconfigured to use three distinct actuation configurations, to directly compare with a state-of-the-art series-elastic actuation scheme. Critical actuation design parameters are derived through optimization. A rigorous modeling approach is presented using the concept of power flows, which are also used to demonstrate the ability to transfer mechanical power between ankle and knee joints using the biarticular tendon. The design principles and control strategies were verified both in simulation and experiment. Notably, the experimental data demonstrate significant improvements of 65–75% in electrical energy consumption compared with a state-of-the-art series-elastic actuator configuration.


Author(s):  
Shahid Hussain ◽  
Prashant K Jamwal ◽  
Mergen H Ghayesh

There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.


Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1743-1756
Author(s):  
Slavka Viteckova ◽  
Patrik Kutilek ◽  
Gérard de Boisboissel ◽  
Radim Krupicka ◽  
Alena Galajdova ◽  
...  

SUMMARYGiven the advanced breakthroughs in the field of supportive robotic technologies, interest in the integration of the human body and a robot into a single system has rapidly increased. The aim of this work is to provide an overview of empowering lower limbs exoskeletons. Along with lower exoskeleton limbs, their unique design concepts, operator–exoskeleton interactions and control strategies are described. Although many problems have been solved in recent development, many challenges remain. Especially in the context of infantry soldiers, fire fighters and rescuers, the challenges of empowering exoskeletons are discussed, and improvements are outlined and described. This study is not only a summary of the current state, but also points to weaknesses of empowering lower limbs exoskeletons and outlines possible improvements.


2020 ◽  
Author(s):  
Daniel Poremski ◽  
Sandra Henrietta Subner ◽  
Grace Lam Fong Kin ◽  
Raveen Dev Ram Dev ◽  
Mok Yee Ming ◽  
...  

The Institute of Mental Health in Singapore continues to attempt to prevent the introduction of COVID-19, despite community transmission. Essential services are maintained and quarantine measures are currently unnecessary. To help similar organizations, strategies are listed along three themes: sustaining essential services, preventing infection, and managing human and consumable resources.


1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


Sign in / Sign up

Export Citation Format

Share Document