State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review

Author(s):  
Shahid Hussain ◽  
Prashant K Jamwal ◽  
Mergen H Ghayesh

There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

Author(s):  
Prashant K Jamwal ◽  
Shahid Hussain ◽  
Mergen H Ghayesh

The application of robotic devices in providing physiotherapies to post-stroke patients and people suffering from incomplete spinal cord injuries is rapidly expanding. It is crucial to provide valid rehabilitation for people who are experiencing abnormality in their gait performance; therefore, design and development of newer robotic devices for the purpose of facilitating patients’ recovery is being actively researched. In order to advance the traditional gait treatment among patients, exoskeletons and orthoses were introduced over the last two decades. This article presents a thorough review of existing robotic gait rehabilitation devices. The latest advancements in the mechanical design, types of control and actuation are also covered. The study comprehends discussions on robotic rehabilitation devices developed both for the training on treadmill and over-ground training. The assist-as-needed strategy for the gait training is particularly emphasized while reviewing various control strategies applied to these robotic devices. This study further reviews experimental investigations and clinical assessments of different control strategies and mechanism designs of robotic gait rehabilitation devices using experimental and clinical trials.


Author(s):  
Mingjie Dong ◽  
Yu Zhou ◽  
Jianfeng Li ◽  
Xi Rong ◽  
Wenpei Fan ◽  
...  

Abstract Background The ankle joint complex (AJC) is of fundamental importance for balance, support, and propulsion. However, it is particularly susceptible to musculoskeletal and neurological injuries, especially neurological injuries such as drop foot following stroke. An important factor in ankle dysfunction is damage to the central nervous system (CNS). Correspondingly, the fundamental goal of rehabilitation training is to stimulate the reorganization and compensation of the CNS, and to promote the recovery of the motor system’s motor perception function. Therefore, an increasing number of ankle rehabilitation robots have been developed to provide long-term accurate and uniform rehabilitation training of the AJC, among which the parallel ankle rehabilitation robot (PARR) is the most studied. The aim of this study is to provide a systematic review of the state of the art in PARR technology, with consideration of the mechanism configurations, actuator types with different trajectory tracking control techniques, and rehabilitation training methods, thus facilitating the development of new and improved PARRs as a next step towards obtaining clinical proof of their rehabilitation benefits. Methods A literature search was conducted on PubMed, Scopus, IEEE Xplore, and Web of Science for articles related to the design and improvement of PARRs for ankle rehabilitation from each site’s respective inception from January 1999 to September 2020 using the keywords “ parallel”, “ ankle”, and “ robot”. Appropriate syntax using Boolean operators and wildcard symbols was utilized for each database to include a wider range of articles that may have used alternate spellings or synonyms, and the references listed in relevant publications were further screened according to the inclusion criteria and exclusion criteria. Results and discussion Ultimately, 65 articles representing 16 unique PARRs were selected for review, all of which have developed the prototypes with experiments designed to verify their usability and feasibility. From the comparison among these PARRs, we found that there are three main considerations for the mechanical design and mechanism optimization of PARRs, the choice of two actuator types including pneumatic and electrically driven control, the covering of the AJC’s motion space, and the optimization of the kinematic design, actuation design and structural design. The trajectory tracking accuracy and interactive control performance also need to be guaranteed to improve the effect of rehabilitation training and stimulate a patient’s active participation. In addition, the parameters of the reviewed 16 PARRs are summarized in detail with their differences compared by using figures and tables in the order they appeared, showing their differences in the two main actuator types, four exercise modes, fifteen control strategies, etc., which revealed the future research trends related to the improvement of the PARRs. Conclusion The selected studies showed the rapid development of PARRs in terms of their mechanical designs, control strategies, and rehabilitation training methods over the last two decades. However, the existing PARRs all have their own pros and cons, and few of the developed devices have been subjected to clinical trials. Designing a PARR with three degrees of freedom (DOFs) and whereby the mechanism’s rotation center coincides with the AJC rotation center is of vital importance in the mechanism design and optimization of PARRs. In addition, the design of actuators combining the advantages of the pneumatic-driven and electrically driven ones, as well as some new other actuators, will be a research hotspot for the development of PARRs. For the control strategy, compliance control with variable parameters should be further studied, with sEMG signal included to improve the real-time performance. Multimode rehabilitation training methods with multimodal motion intention recognition, real-time online detection and evaluation system should also be further developed to meet the needs of different ankle disability and rehabilitation stages. In addition, the clinical trials are in urgent need to help the PARRs be implementable as an intervention in clinical practice.


2020 ◽  
Vol 47 (11) ◽  
pp. 947-964 ◽  
Author(s):  
Carina L. Gargalo ◽  
Isuru Udugama ◽  
Katrin Pontius ◽  
Pau C. Lopez ◽  
Rasmus F. Nielsen ◽  
...  

AbstractThe biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing more advanced monitoring and control strategies.


2020 ◽  
Vol 11 (3) ◽  
pp. 4054-4060
Author(s):  
Palak Vaghela ◽  
Langade R. A.

Information about diarrheal diseases, their determinants in India, and prevention and control strategies must be reviewed in light of recent developments to ensure better planning and organization of public health services. In childhood, especially in developing countries, diarrhoea is most frequent. This research analyses the usage of ORS and measuring agents in diarrhoea management and care. To test the effectiveness of application of Zinc plus Saccharomyces boulardii(as probiotic) to WHO-ORS as well as to equate these results with WHO-ORS only. Currently, probiotics, in particular, in severe bacterial diarrhoea, are used in various preventive and treatment areas. In this analysis the regulation of vomiting between the three groups was not substantially different (p>0.05). In the ORS+Probiotic Group and ORS+Zinc Group, the patients were shown to be completely hydrated slightly earlier than the ORS group (p < 0.0001). But for the first day, ORS+Zinc Group and ORS+Probiotic Group greatly maintained the lack of stool frequency in contrast with the ORS Group patients. The incidence of losing stool in patients from Probiotic Group were also found to control considerably more quickly. Furthermore, in patients from Probiotic group, the mean length of diarrhoea was fewer. In our research, in the first 48 hours of care, children who were probiotic-present were more vulnerable to diarrhoea with stronger outcomes between 72 and 96 hours, and to increase continuity as well as shortening stays.


2019 ◽  
pp. 027836491989376
Author(s):  
Wesley Roozing ◽  
Zeyu Ren ◽  
Nikos G Tsagarakis

We present the development, modeling, and control of a three-degree-of-freedom compliantly actuated leg called the eLeg, which employs both series- and parallel-elastic actuation as well as a bio-inspired biarticular tendon. The leg can be reconfigured to use three distinct actuation configurations, to directly compare with a state-of-the-art series-elastic actuation scheme. Critical actuation design parameters are derived through optimization. A rigorous modeling approach is presented using the concept of power flows, which are also used to demonstrate the ability to transfer mechanical power between ankle and knee joints using the biarticular tendon. The design principles and control strategies were verified both in simulation and experiment. Notably, the experimental data demonstrate significant improvements of 65–75% in electrical energy consumption compared with a state-of-the-art series-elastic actuator configuration.


2018 ◽  
Vol 34 (2) ◽  
pp. 135-200 ◽  
Author(s):  
Frerich J. Keil

Abstract Process intensification (PI) is a rapidly growing field of research and industrial development that has already created many innovations in chemical process industry. PI is directed toward substantially smaller, cleaner, more energy-efficient technology. Furthermore, PI aims at safer and sustainable technological developments. Its tools are reduction of the number of devices (integration of several functionalities in one apparatus), improving heat and mass transfer by advanced mixing technologies and shorter diffusion pathways, miniaturization, novel energy techniques, new separation approaches, integrated optimization and control strategies. This review discusses many of the recent developments in PI. Starting from fundamental definitions, microfluidic technology, mixing, modern distillation techniques, membrane separation, continuous chromatography, and application of gravitational, electric, and magnetic fields will be described.


Author(s):  
Suren Sargsyan ◽  
Vigen Arakelian ◽  
Sébastien Briot

All over the world, several dozen million people suffer from the effects of post-polio, multiple sclerosis, spinal cord injury, cerebral palsy, etc. and could benefit from the advances in robotic devices for rehabilitation. Thus, for modern society, an important and vital problem of designing systems for rehabilitation of human physical working ability appears. The temporary or permanent loss of human motor functions can be compensated by means of various rehabilitation devices. They can be simple mechanical systems for orthoses, which duplicate the functions of human extremities supplying with rigidity and bearing capacity or more complex mechatronic rehabilitation devices with higher level of control. We attempt to cover all of the major developments in these areas, focusing particularly on the development of the different concepts and their functional characteristics. The robotic devices with several structures are classified, taking into account the actuation systems, the neuromuscular stimulations, and the structural schemes. It is showed that the problems concerning the design of rehabilitation devices are complex and involve many questions in the sphere of biomedicine, mechanics, robot technology, electromechanics and optimal control. This paper provides a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature, and it ends with a discussion of the major advances that have been made and should be yet overcome.


Sign in / Sign up

Export Citation Format

Share Document