scholarly journals Unravelling the contribution of nitrifying and methanotrophic bacteria to micropollutant co-metabolism in rapid sand filters

2021 ◽  
pp. 127760
Author(s):  
Jinsong Wang ◽  
Chen Zhang ◽  
Baptiste A.J. Poursat ◽  
David de Ridder ◽  
Hauke Smidt ◽  
...  
Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
C.C. Remsen

Methane, a contributor to the “greenhouse effect”, is oxidized in the natural environment by methanotrophic bacteria. As part of a comprehensive research effort, we have been examining the ultrastructure of methanotrophs. These microorganisms have complex outer cell wall structures similar to those frequently found in other chemol itho- trophic bacteria. (1,2)In our work, we have focused on the “type” strains of Methylomonas albus BG8 and Methylosinus trichosporium OB3b. Between Spurr and LR White embedding resins, we found a difference 1n the preservation of an outer cup layer of BG8 external to the peripheral membranes. Cells from the same sample embedded in Spurr consistently lacked this feature (FIG. 1). This effect was overcome by an en bloc ruthenium red (RR) protocol that resulted in successful retention of the cup layer in Spurr resin (FIG. 2). For OB3b cells, the en bloc RR protocol resulted in an exterior bead feature distinguishable in thin section (FIG. 4) that previously was seen only by SEM.


2005 ◽  
Vol 5 (5) ◽  
pp. 1-8 ◽  
Author(s):  
K.Y. Choi ◽  
B.A. Dempsey

The objective of the research was to evaluate in-line coagulation to improve performance during ultrafiltration (UF). In-line coagulation means use of coagulants without removal of coagulated solids prior to UF. Performance was evaluated by removal of contaminants (water quality) and by resistance to filtration and recovery of flux after hydraulic or chemical cleaning (water production). We hypothesized that coagulation conditions inappropriate for conventional treatment, in particular under-dosing conditions that produce particles that neither settle nor are removed in rapid sand filters, would be effective for in-line coagulation prior to UF. A variety of pre-treatment processes for UF have been investigated including coagulation, powdered activated carbon (PAC) or granular activated carbon (GAC), adsorption on iron oxides or other pre-formed settleable solid phases, or ozonation. Coagulation pre-treatment is often used for removal of fouling substances prior to NF or RO. It has been reported that effective conventional coagulation conditions produced larger particles and this reduced fouling during membrane filtration by reducing adsorption in membrane pores, increasing cake porosity, and increasing transport of foulants away from the membrane surface. However, aggregates produced under sweep floc conditions were more compressible than for charge neutralization conditions, resulting in compaction when the membrane filtration system was pressurized. It was known that the coagulated suspension under either charge-neutralization or sweep floc condition showed similar steady-state flux under the cross-flow microfiltration mode. Another report on the concept of critical floc size suggested that flocs need to reach a certain critical size before MF, otherwise membranes can be irreversibly clogged by the coagulant solids. The authors were motivated to study the effect of various coagulation conditions on the performance of a membrane filtration system.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 381-390 ◽  
Author(s):  
John Upton

The European waste water industry will need to develop denitrification processes to remove nitrogen as pressures increase to reduce nutrient levels discharged in effluents. In the USA deep bed filter technology has been used extensively to provide denitrification to levels less than 5 mg/l TN. This paper describes this technology and the full scale performance at some waste water plants in Florida, USA. This paper also describes a pilot study in the United Kingdom at Severn Trent Water. The results of the pilot plant study indicate that denitrification in deep bed sand filters is a sound robust technology using methanol addition. Nitrogen removals greater than the 70% required in the EC Directive 1991 are possible at winter sewage temperatures. The process is most suitable for achieving nitrogen removal at trickling filter plants. The cost of methanol addition is calculated to be ₤10/1000m3.


1995 ◽  
Vol 31 (12) ◽  
pp. 379-387 ◽  
Author(s):  
Henryk Melcer ◽  
Brian Evans ◽  
Stephen G. Nutt ◽  
Anthony Ho

To establish Best Available Technology Economically Achievable (BATEA) in non-urban communities which presently use conventional lagoon technology, an investigation was undertaken to evaluate alternatives which can be used to improve lagoon effluent and establish costs. Evaluated were the “Sutton” and the intermittent sand filtration or “New Hamburg” processes. The Sutton concept consists of a nitrifying extended-aeration plant followed by polishing lagoons, with waste sludge discharged into the lagoons. The New Hamburg concept consists of aerated or facultative lagoons, with the lagoon effluent sprayed intermittently over sand filters. The Sutton plants produce an improved effluent quality relative to conventional facultative lagoons in terms of BOD5 and TSS concentrations. Increases in ammonia concentration across the polishing pond occur after 5-7 years of plant operation, suggesting a need to implement a regular program of sludge removal from the lagoon. The New Hamburg process results in a significant improvement in effluent quality in terms of BOD5, TSS, TP, TKN, NH3-N and H2S concentrations. Approximate capital costs for upgrading the existing conventional lagoons in Ontario to Sutton and New Hamburg process facilities are estimated at US $221 million and US $93 million, respectively.


1998 ◽  
Vol 37 (9) ◽  
pp. 105-112 ◽  
Author(s):  
Ana María Ingallinella ◽  
Luis María Stecca ◽  
Martin Wegelin

This paper presents the methodology used for the rehabilitation of the pretreatment stage in a water treatment plant for a village located in Bolivia which has 3500 inhabitants. The treatment plant was initially composed by horizontal-flow roughing filters and slow sand filters, but due to the high contents of colloidal turbidity of the providing source, it did not work properly. A plan of rehabilitation was made which comprised laboratory tests, pilot tests and proposal of modifications based on the results of previous stages. The laboratory tests were made in order to find the optimum conditions to coagulate the raw water. It was found that horizontal-flow roughing filters must be turned into up-flow roughing filters, so a pilot plant was built and was operated for three months in order to find suitable design parameters. The results obtained obtained during the operation of the pilot plant and the proposal of modifications are presented. The results of operation of the final plant, which are also reported, demonstrated the advantages of the up-flow roughing filtration as a pretreatment stage when it is necessary to add chemical products in small treatment plants.


2021 ◽  
pp. 130217
Author(s):  
Betül Yesiltas ◽  
Simon Gregersen ◽  
Linea Lægsgaard ◽  
Maja L. Brinch ◽  
Tobias H. Olsen ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yeit Haan Teow ◽  
Meng Teck Chong ◽  
Kah Chun Ho ◽  
Abdul Wahab Mohammad

AbstractAiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.


2021 ◽  
Vol 593 ◽  
pp. 125839
Author(s):  
Gopal Kumar ◽  
D.R. Sena ◽  
B.K. Rao ◽  
R.S. Kurothe ◽  
Nyonand Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document