Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes

2012 ◽  
Vol 454-455 ◽  
pp. 123-130 ◽  
Author(s):  
Z.H. Shi ◽  
N.F. Fang ◽  
F.Z. Wu ◽  
L. Wang ◽  
B.J. Yue ◽  
...  
2020 ◽  
Author(s):  
Tomas Laburda ◽  
Petr Kavka ◽  
Romana Kubínová ◽  
Martin Neumann ◽  
Ondřej Marek ◽  
...  

<p>Soil erosion is a long-term problem that causes the degradation of the earth's surface depending on geomorphological and climatic conditions. Adverse combinations of these conditions can create situations where not only sheet erosion occurs, but also rill processes begin to occur due to the concentration of surface runoff. Erosion processes become undesirable and dangerous when they occur on construction sites. The presented project is basically focused on the effectiveness of protective geotextiles against soil erosion, but processes related to sheer and rill erosion were also investigated. The research was carried out on experimental plots of 4x1 meters, which were placed in the outdoor laboratory in Jirkov. These three plots were set at slopes from 22° to 34° and artificial rain was simulated on them using a rainfall simulator. A second experimental area of ​​the same size was available at the laboratory rainfall simulator at the CTU in Prague, where a modern facility was created for the purpose of soil erosion testing on steep slopes. This device can create slopes up to 40°.</p><p>The photogrammetric method „Structure from Motion“ was used for monitoring soil surface before and after each simulation. Orthophotos and digital elevation models were compared with each other to get digital elevation models of difference. Calculation of the ratio between sheet and rill erosion was done by manually creating rill polygons and by calculating the volume changes above the polygons of these rills and over the whole surface. According to preliminary results on these 4 m long slopes, the rill volume represented approximately 30 % compared to the overall volume change.</p><p>Shifts of stabilizing natural geotextiles by surface runoff and eroded material were also monitored using photogrammetric methods. Deformations and displacements were measured from differences in the detailed images before and after the simulation. Transversal veins and their shift along the slope were evaluated.</p><p>This research is funded by the TA CR  - TH02030428.</p>


2017 ◽  
Vol 548 ◽  
pp. 652-664 ◽  
Author(s):  
X.C. (John) Zhang ◽  
Z.L. Wang

CATENA ◽  
2017 ◽  
Vol 157 ◽  
pp. 47-57 ◽  
Author(s):  
Jinshi Lin ◽  
Yanhe Huang ◽  
Gan Zhao ◽  
Fangshi Jiang ◽  
Ming-kuang Wang ◽  
...  

2017 ◽  
Vol 43 (1) ◽  
pp. 119 ◽  
Author(s):  
M. Kirchhoff ◽  
J. Rodrigo-Comino ◽  
M. Seeger ◽  
J.B. Ries

German vineyards are one of the land uses most prone to soil erosion. Due to their placement on mainly steep slopes and non-conservative cultivation practices, runoff and soil loss are a serious problem for wine growers. In the Saar-Mosel valley (Rhineland-Palatinate, Germany), there is a tendency towards organic management of vineyards with protective grass cover in the inter-rows. Since there is a lack of information about organic-conventional tillage in German vineyards related to soil erosion processes, this study presents a comparison between these two soil management practices. For this purpose, 22 rainfall simulations were performed as well as a medium-term monitoring by using 4-paired Gerlach troughs in two experimental sites in the Saar-Mosel valley. The mean simulated runoff coefficient and suspended sediment load in conventional vineyards amounted up to 23.3% and 33.75 g m-2, respectively. In the organic site, runoff and soil loss were only recorded in one out of the 11 simulations. Runoff and sediment was collected in the Gerlach troughs for 33 natural rainfall events. In the conventional vineyard, the total measured soil loss was 3314.63 g m-1 and 6503.77 g m-1 and total runoff volumes were 105.52 L m-1 and 172.58 L m-1. In the organic site, total soil losses reached 143.16 g m-1 and 258.89 g m-1 and total runoff was 21.65 L m-1 and 12.69 L m-1. When soil loss was measured without corresponding runoff or precipitation, soil erosion was activated by tillage or trampling. Finally, the conventional vineyard showed a higher variability in soil loss and runoff suggesting less predictable results.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


2021 ◽  
Vol 11 (15) ◽  
pp. 6763
Author(s):  
Mongi Ben Zaied ◽  
Seifeddine Jomaa ◽  
Mohamed Ouessar

Soil erosion remains one of the principal environmental problems in arid regions. This study aims to assess and quantify the variability of soil erosion in the Koutine catchment using the RUSLE (Revised Universal Soil Loss Equation) model. The Koutine catchment is located in an arid area in southeastern Tunisia and is characterized by an annual mean precipitation of less than 200 mm. The model was used to examine the influence of topography, extreme rainstorm intensity and soil texture on soil loss. The data used for model validation were obtained from field measurements by monitoring deposited sediment in settlement basins of 25 cisterns (a traditional water harvesting and storage technique) over 4 years, from 2015 to 2018. Results showed that slope is the most controlling factor of soil loss. The average annual soil loss in monitoring sites varies between 0.01 and 12.5 t/ha/y. The storm events inducing the largest soil losses occurred in the upstream part of the Koutine catchment with a maximum value of 7.3 t/ha per event. Soil erosion is highly affected by initial and preceding soil conditions. The RUSLE model reasonably reproduced (R2 = 0.81) the spatiotemporal variability of measured soil losses in the study catchment during the observation period. This study revealed the importance of using the cisterns in the data-scarce dry areas as a substitute for the classic soil erosion monitoring fields. Besides, combining modeling of outputs and field measurements could improve our physical understanding of soil erosion processes and their controlling factors in an arid catchment. The study results are beneficial for decision-makers to evaluate the existing soil conservation and water management plans, which can be further adjusted using appropriate soil erosion mitigation options based on scientific evidence.


Author(s):  
Valeriy Demidov ◽  
Oleg Makarov

The monograph summarizes the information over the past 20 years on the currently widely used. The textbook is intended for students of higher educational institutions, studying in the specialty of soil science, as well as specializing in erosion and soil protection. The textbook describes the physical basis and mechanism of erosion processes, based on some sections of hydraulics, hydrology, hydro-and aeromechanics, knowledge of which is necessary to understand the mechanism of water, wind and irrigation soil erosion. The main mathematical models and principles of forecasting the values of soil losses as a result of erosion processes are considered. The textbook will be useful not only for students and postgraduates studying in the specialty of soil science, but also for geographers, ecologists and a wide range of specialists interested in the problems of soil cover conservation and environmental protection.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

<p><strong>Straw mulch impact on soil properties and initial soil erosion processes in the maize field</strong></p><p>Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic</p><p>University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia</p><p>(*correspondence to Ivan Dugan: [email protected])</p><p>Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha<sup>-1</sup> under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha<sup>-1</sup>), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h<sup>-1</sup>, for 30 min, over 0.785 m<sup>2</sup> plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha<sup>-1</sup>, when extrapolated, reached as high as 5.07 t ha<sup>-1 </sup>in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.</p><p><strong>Key words: straw mulch, </strong>rainfall simulation, soil water erosion</p><p><strong>Acknowledgment</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p><p><strong>Literature</strong></p><p>Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.</p><p>Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.</p>


2017 ◽  
Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. The physical aspects and knowledge of soil erosion in six communities in rural Chiapas, Mexico were assessed. Average erosion rates estimated with the RUSLE model ranged from 200 to 1,200 ha−1 yr−1. Most erosion rates are relatively high due to steep slopes, sandy soils and bare land cover. The lowest rates occur where corn is cultivated for much of the year and slopes are relatively low. The results of a knowledge, attitudes and practices (KAP) survey showed that two-thirds of respondents believed that the major cause of soil erosion was hurricanes or rainfall and only 14 % of respondents identified human activities as causes of erosion. Forty-two percent of respondents indicated that the responsibility for solving soil erosion problems lies with government, as opposed to 26 % indicating that the community is responsible. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently applying reforestation practices and another one-third indicated that they were not following any conservation practices. The KAP results were used to assess the overall level of knowledge and interest in soil erosion problems and their solutions by compiling negative responses. The community of Barrio Vicente Guerrero may be most vulnerable to soil erosion, since it had the highest average negative response and the second highest soil erosion rate. However, Poblado Cambil had the highest estimated soil erosion rate and a relatively low average negative response rate, suggesting that soil conservation efforts should be prioritized for this community. We conclude that as long as the economic and productive needs of the communities are not solved simultaneously, the risk of soil erosion will increase in the future, which threatens the survival of these communities.


Sign in / Sign up

Export Citation Format

Share Document