Photogrammetricaly measured sheet and rill erosion on steep slopes

Author(s):  
Tomas Laburda ◽  
Petr Kavka ◽  
Romana Kubínová ◽  
Martin Neumann ◽  
Ondřej Marek ◽  
...  

<p>Soil erosion is a long-term problem that causes the degradation of the earth's surface depending on geomorphological and climatic conditions. Adverse combinations of these conditions can create situations where not only sheet erosion occurs, but also rill processes begin to occur due to the concentration of surface runoff. Erosion processes become undesirable and dangerous when they occur on construction sites. The presented project is basically focused on the effectiveness of protective geotextiles against soil erosion, but processes related to sheer and rill erosion were also investigated. The research was carried out on experimental plots of 4x1 meters, which were placed in the outdoor laboratory in Jirkov. These three plots were set at slopes from 22° to 34° and artificial rain was simulated on them using a rainfall simulator. A second experimental area of ​​the same size was available at the laboratory rainfall simulator at the CTU in Prague, where a modern facility was created for the purpose of soil erosion testing on steep slopes. This device can create slopes up to 40°.</p><p>The photogrammetric method „Structure from Motion“ was used for monitoring soil surface before and after each simulation. Orthophotos and digital elevation models were compared with each other to get digital elevation models of difference. Calculation of the ratio between sheet and rill erosion was done by manually creating rill polygons and by calculating the volume changes above the polygons of these rills and over the whole surface. According to preliminary results on these 4 m long slopes, the rill volume represented approximately 30 % compared to the overall volume change.</p><p>Shifts of stabilizing natural geotextiles by surface runoff and eroded material were also monitored using photogrammetric methods. Deformations and displacements were measured from differences in the detailed images before and after the simulation. Transversal veins and their shift along the slope were evaluated.</p><p>This research is funded by the TA CR  - TH02030428.</p>

2021 ◽  
Author(s):  
Romana Kubínová ◽  
Petr Kavka ◽  
Martin Neumann ◽  
Jan-František Kubát

<p>In this contribution the particle size distributions of the soil sediment obtained from soil erosion experiments were analysed. All the tests were done on arable topsoil’s, separately the size distribution of the soil aggregates and individual soil particles were evaluated. Soil erosion was initiated under the controlled conditions. CTU Prague laboratory rainfall simulator and field laboratory in Jirkov were used for this research. The rainfall was artificially generated with use of a nozzle type rainfall simulator. The sediment transported due to the surface runoff and rill erosion was collected from the discharge of the inclined soil erosion plots (slopes 20 – 34°, slope length 4 m).<br>During each experiment, eight samples were collected. Four samples were collected during the first experimental rainfall. For the next ten days, the container was kept aside the rainfall. Afterwards, the raining with the rainfall simulator on plot (which now had different initial condition compared to the plot during the first experimental rainfall as the plot already contained erosion rills from the previous episode) has been resumed and another four samples were collected.<br>Experimental plots were vertically divided into two parts. On one part was an eel and on the second part were different types of rolled erosion control products (RECPs) – Enkamat 7010, and 7020, Biomac-C, coir fibres K700 and K400, jute, Macmat 8.1, mulch, hay, nonwoven, fortrac 3D and triangle. The influence of RECPs to the particle size distribution was investigated.<br>Laser diffraction has been selected as a method to determine particle size distribution and device Mastersizer 3000 was used. By the comparison of the particle size distribution, of more than five hundred samples, the different response to the soil erosion mechanism and the influence of external factors (slope of the experimental plot, initial condition and presence of RECPs) on the particle size distribution and soil aggregates content in eroded sediment were investigated. It has been found that both the particle size and aggregates size distribution of the eroded sediment changes considerably in time.<br>This research is funded by the TH02030428 - „Design of technical measures for slopes stabilization and soil erosion prevention” and by the International CTU grant SGS20/156/OHK1/3T/11.</p>


2022 ◽  
pp. 92-111
Author(s):  
Bhavya Kavitha Dwarapureddi ◽  
Swathi Dash ◽  
Aman Raj ◽  
Nihanth Soury Garika ◽  
Ankit Kumar ◽  
...  

Climatic conditions, precise relief features, variations of soil, flora cover, socio-economic conditions together lead to torrential flood waves as a result of current soil erosion processes. Erosion and torrential floods are aggravated due to over exploitation of agricultural and forest land along with urbanization. Effects of soil erosion include nutrient loss, land use changes, reduced productivity, siltation of water bodies, among other effects like affecting livelihood of marginal communities dependent on agriculture globally and public health. Nearly 11 million km2 of soil is impacted by erosion precisely by water. Other factors like intensified agriculture and climate change contribute to and aggravate the erosion rate. Contemporary torrential floods are characterized by their increased destruction and frequency unlike the pre-development periods when their occurrence was rare. The focus of this review is to compile and aid as a data base for understanding methods of preventing erosion of soil and torrential floods as put forth by various researchers.


2016 ◽  
Vol 4 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Jacques Bechet ◽  
Julien Duc ◽  
Alexandre Loye ◽  
Michel Jaboyedoff ◽  
Nicolle Mathys ◽  
...  

Abstract. The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion–deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to trigger significant erosion; they are above 9 mm rainfall or of an intensity of more than 1 mm min−1, values which can vary if antecedent precipitation is significant within the last 5 days.This study improves knowledge of the spatial distribution of erosion seasonality in badlands and demonstrates the potential of careful 3-D high-resolution topography using TLS to improve the understanding of erosive processes.


2019 ◽  
Vol 28 (1) ◽  
pp. 95-105 ◽  
Author(s):  
I. P. Kovalchuk ◽  
K. A. Lukianchuk ◽  
V. A. Bogdanets

The relief has a major impact on the landscape`s hydrological, geomorphological and biological processes. Many geographic information systems used elevation data as the primary data for analysis, modeling, etc. A digital elevation model (DEM) is a modern representation of the continuous variations of relief over space in digital form. Digital Elevation Models (DEMs) are important source for prediction of soil erosion parameters. The potential of global open source DEMs (SRTM, ASTER, ALOS) and their suitability for using in modeling of erosion processes are assessed in this study. Shumsky district of Ternopil region, which is located in the Western part of Ukraine, is the area of our study. The soils of Shumsky district are adverselyaffected by erosion processes. The analysis was performed on the basis of the characteristics of the hydrological network and relief. The reference DEM was generated from the hypsographic data(contours) on the 1:50000 topographical map series compiled by production units of the Main Department of Geodesy and Cartography under the Council of Ministers. The differences between the reference DEM and open source DEMs (SRTM, ASTER and ALOS) are examined. Methods of visual detection of DEM defects, profiling, correlation, and statistics were used in the comparative analysis. This research included the analysis oferrors that occurred during the generation of DEM. The vertical accuracy of these DEMs, root mean square error (RMSE), absolute and relative errors, maximum deviation, and correlation coefficient have been calculated. Vertical accuracy of DEMs has been assessed using actual heights of the sample points. The analysis shows that SRTM and ALOS DEMs are more reliable and accurate than ASTER GDEM. The results indicate that vertical accuracy of DEMs is 7,02m, 7,12 m, 7,60 mand 8,71 m for ALOS, SRTM 30, SRTM 90 and ASTER DEMs respectively. ASTER GDEM had the highest absolute, relative and root mean square errors, the highest maximum positive and negative deviation, a large difference with reference heights, and the lowest correlation coefficient. Therefore, ASTER GDEM is the least acceptable for studying the intensity and development of erosion processes. The use of global open source DEMs, compared with the vectorization of topographic maps,greatly simplifies and accelerates the modeling of erosion processes and the assessment of the erosion risk in the administrative district.


2020 ◽  
Author(s):  
Romana Kubínová ◽  
Petr Kavka ◽  
Martin Neumann ◽  
Tomáš Laburda

<p>In this contribution the grain size distributions of the soil sediment obtained from soil erosion experiments were analysed. All the tests were done on arable topsoil’s, separately the size distribution of the soil aggregates and individual soil particles were evaluated. Soil erosion was initiated under the controlled conditions in the laboratories. The rainfall was artificially generated with use of a nozzle type rainfall simulator. The sediment transported due to the surface runoff and rill erosion was collected from the discharge of the inclined soil erosion plots (slopes 20 – 34°, slope length 4 m).</p><p>The soil sediment was collected in four sampling times. The first and the second were collected in fifteen and thirty minutes from the beginning of the simulation, then followed fifteen minutes long pause without raining and then the simulation continued and soil samples were collected again in fifteen and thirty minutes from the beginning of the rain. After ten days long pause whole process were repeated at the same experimental plot contains rills from previous simulation. Experimental plots were vertically divided into two parts. On one part was an eel and on the second part were different types of rolled erosion control products (RECPs) – Enkamat 7010, Biomac-C, coir fibres K700 and K400, jute, Macmat 8.1 with soil, mulch, hay and nonwoven. The influence of RECPs to the grain size distribution was investigated.</p><p>Laser diffraction has been selected as a method to determine grain size distribution and device Mastersizer 3000 was used. By the comparison of the grain size distribution, of more than five hundreds samples, the different response to the soil erosion mechanism and the influence of external factors (experimental plot slope, sampling time from the surface runoff and presence of RECPs) on the grain size distribution and soil aggregates content in eroded sediment were investigated. It has been found that both the particle size and aggregates size distribution of the eroded sediment changes considerably in time.</p><p>This research is funded by the TH02030428 - „Design of technical measures for slopes stabilization and soil erosion prevention”.</p>


2011 ◽  
Vol 271-273 ◽  
pp. 1142-1145
Author(s):  
Chun Xia Yang ◽  
Bin Zhen ◽  
Li Li ◽  
Jing Huang ◽  
Peng Jiao

Soil erosion processes and erosion distribution was research focus to establish distributed mathematical equation in the soil erosion areas, GIS techniques and fractal theory provide a means to advance these studies.Slope erosion patterns of bare slope was studied under rainfall intensities of 45、90 and 130mm/h with 20°slope gradient using simulated rainfall experiment. The results showed that the time of rill appeared of lower rainfall intensity was later than that of high rainfall intensity;Within the rainfall time,the rill scale expanded increased with the increasing of rainfall intensity; The erosion distribution was studied by the three-dimensional laser scanner,The trend of rill erosion deep kept roughly consistent with that of sediment; The characteristics was analyzed of slope erosion by GIS, the fractal dimension and sediment were both increased with rainfall intensity, The fractal dimension was increasing with erosion pattern complexity. So the fractal dimension is the representative of erosion complexity.


Soil Research ◽  
2003 ◽  
Vol 41 (8) ◽  
pp. 1489 ◽  
Author(s):  
G. J. Sheridan ◽  
H. B. So ◽  
R. J. Loch

Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: (a) for steep slopes, (b)�for specific erosion processes, and (c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C – D sin θ)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A –1.50, B 6.51, C 0.94, and D 5.30 (r2 = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A –1.12, B 16.05, C 2.61, and D 8.32 (r2 = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related (log–log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 7 ◽  
Author(s):  
Ning Wang ◽  
Xuefeng Chu

Topographic delineation is critical to watershed hydrologic modeling, which may significantly influence the accuracy of model simulations. In most traditional delineation methods, however, surface depressions are fully filled and hence, watershed-scale hydrologic modeling is based on depression-less topography. In reality, dynamic filling and spilling of depressions affect hydrologic connectivity and surface runoff processes, especially in depression-dominated areas. Thus, accounting for the internal hydrologic connectivity within a watershed is crucial to such hydrologic simulations. The objective of this study was to improve watershed delineation to further reveal such complex hydrologic connectivity. To achieve this objective, a new algorithm, HUD-DC, was developed for delineation of hydrologic units (HUs) associated with depressions and channels. Unlike the traditional delineation methods, HUD-DC considers both filled and unfilled conditions to identify depressions and their overflow thresholds, as well as all channels. Furthermore, HUs, which include puddle-based units and channel-based units, were identified based on depressions and channels and the detailed connectivity between the HUs was determined. A watershed in North Dakota was selected for testing HUD-DC, and Arc Hydro was also utilized to compare with HUD-DC in depression-oriented delineation. The results highlight the significance of depressions and the complexity of hydrologic connectivity. In addition, HUD-DC was utilized to evaluate the variations in topographic characteristics under different filling conditions, which provided helpful guidance for the identification of filling thresholds to effectively remove artifacts in digital elevation models.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6254
Author(s):  
Alexander André Remke ◽  
Jesus Rodrigo-Comino ◽  
Stefan Wirtz ◽  
Johannes B. Ries

The Terrestrial Photogrammetry Scanner (TEPHOS) offers the possibility to precisely monitor linear erosion features using the Structure from Motion (SfM) technique. This is a static, multi-camera array and dynamically moves the digital videoframe camera designed to obtain 3-D models of rills before and after the runoff experiments. The main goals were to (1) obtain better insight into the rills; (2) reduce the technical gaps generated during the runoff experiments using only one camera; (3) enable the visual location of eroded, transported and accumulated material. In this study, we obtained a mean error for all pictures reaching up to 0.00433 pixels and every single one of them was under 0.15 pixel. So, we obtained an error of about 1/10th of the maximum possible resolution. A conservative value for the overall accuracy was one pixel, which means that, in our case, the accuracy was 0.0625 mm. The point density, in our example, reached 29,484,888 pts/m2. It became possible to get a glimpse of the hotspots of sidewall failure and rill-bed incision. We conclude that the combination of both approaches—rill experiment and 3D models—will make easy under laboratory conditions to describe the soil erosion processes accurately in a mathematical–physical way.


2012 ◽  
Vol 9 (9) ◽  
pp. 10011-10051
Author(s):  
D. Zhu ◽  
Q. Ren ◽  
Y. Xuan ◽  
Y. Chen ◽  
I. Cluckie

Abstract. The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation to described by grid based digital elevation models (DEMs). However, a serious problem of this approach may arise when using a 2-D surface flow model which exchanges flows through adjacent cells, or conventional rink removal algorithms which also allow flow to be exchanged along diagonal directions, due to the existence of artificial depression in DEMs. This study firstly analyses the two types of depressions in DEMs and reviews the current depression filling algorithms with a medium sized basin in South-East England, the Upper Medway Catchment (220 km2) used to demonstrate the depression issue in 2-D surface runoff simulation by MIKE SHE with different DEM resolutions (50 m, 100 m and 200 m). An alternative depression-filling algorithm for 2-D overland flow modelling is developed and evaluated by comparing the simulated flows at the outlet of the catchment. This result suggests that the depression estimates at different grid resolution of DEM highly influences overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue when comparing simulations in sink-dominated and sink-free digital elevation models, especially for depressions in relatively flat areas on digital land surface models.


Sign in / Sign up

Export Citation Format

Share Document