Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China

2016 ◽  
Vol 537 ◽  
pp. 356-366 ◽  
Author(s):  
Liangxia Duan ◽  
Mingbin Huang ◽  
Luodan Zhang
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10349
Author(s):  
Zhenguo Zhang ◽  
Mingming Wang ◽  
Jikai Liu ◽  
Xinwei Li

Identification of typical vegetation succession types and their important influencing factors is an important prerequisite to implement differential vegetation and soil management after land abandonment on the Loess Plateau, China. However, there is no reported study specifically on the identification of vegetation types and their important factors as well as the thresholds of the important factors for classification of the vegetation types, based on the medium- to long-term succession of natural vegetation after cropland abandonment. We collected vegetation and soil data on the natural vegetation with the longest 60-year-old forest communities that developed after cropland abandonment and analyzed the data using two-way indicator species analysis, detrended correspondence analysis, direct canonical correspondence analysis and classification tree model. The vegetation communities were classified into five distinct vegetation types, including Artemisia scoparia, Lespedeza davurica and Stipa bungeana, Artemisia giraldii pamp, Sophora viciifolia, Quercus liaotungensis and Biota orientalis. The years after cropland abandonment and soil C/N were further identified as important factors determining the types of vegetation. Likewise, it was observed that most of the investigated soil nutrient variables and soil texture-related variables improved with the vegetation succession while soil water in the surface layers showed a decreasing trend. These findings may provide an ecological basis for site-specific management of vegetation types after cropland abandonment in the medium-long term on the Loess Plateau. Our results encourage further exploration of vegetation succession and their important factors based on longer periods of vegetation succession after cropland abandonment under more soil and climatic conditions on the mountainous areas as the Loess Plateau.


2008 ◽  
Vol 65 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wei Hu ◽  
Ming An Shao ◽  
Quan Jiu Wang ◽  
Jun Fan ◽  
Klaus Reichardt

The understanding of the structure of the spatial variability of soil surface hydraulic properties on steep slopes is important for modeling infiltration and runoff processes. The objective of this study was to investigate the spatial variability of these properties on a steep slope of the Loess Plateau in northwest China. A 9600 m² area was systematically sampled in a grid of 106 points spaced 10 m x 10 m. Hydraulic properties were determined with a disc infiltrometer under multiple pressure heads (-15, -9, -6, -3, 0 cm) at each sample point. Classical and geo-statistical methods were used for data analysis. The results indicated that the variation of Gardner's a and hydraulic conductivities at all applied pressure heads was moderate and the heterogeneity for hydraulic conductivities increased as the applied pressure head increased. Along the slope, hydraulic conductivities generally decreased downwards, while the Gardner's a fluctuated slightly. The Gardner's a of the shaded aspect of the slope was greater than that of the sunny aspect. The hydraulic conductivities of the shaded aspect were greater at higher pressure heads as compared to the sunny aspect, but lower than those of the sunny aspect at lower pressure heads. Correlation analysis showed a negative correlation between hydraulic conductivity and soil organic matter and clay (<0.01 mm) contents. Hydraulic conductivities at pressure heads of -3, -6, -9, -15 cm varied across the slope and their spatial dependence increased as the pressure head declined. The heterogeneity and spatial dependence of hydraulic properties were larger for the areas with shaded aspect as compared to the sunny aspect, however, as pressure decreased they showed a progressively increasing spatial structure, and their spatial structure behaved increasingly similar in both the shaded and sunny aspects.


2021 ◽  
Author(s):  
Zhihui Wang ◽  
Peiqing Xiao

&lt;p&gt;&lt;strong&gt;Conversion of cropland to forest/grassland has become a key ecological restoration measure on the Loess Plateau since 1999. Accurate mapping of the spatio-temporal dynamic information of conversion from cropland into forest/grassland is necessary for studying the effects of vegetation change on hydro-ecological process and soil and water conservation on the Loess Plateau, China. Currently, the accuracy of change detection of farmland and forest/grassland at 30-m scale in this area is seriously affected by insufficient temporal information from observations and irregular fluctuations in vegetation greenness caused by precipitation and human activities. In this study, an innovative method for continuous change detection of cropland and forest/grassland using all available Landsat time-series data. The period with vegetation coverage is firstly identified using normalized difference vegetation index (NDVI) time series. The intra-annual NDVI time series is then developed at a 1-day resolution based on linear interpolation and S-G filtering using all available NDVI data during the period when vegetation types are stable. Vegetation type change is initially detected by comparing the NDVI of intra-annual composites and the newly observed NDVI. Finally, the time of change and classification for vegetation types are determined using decision tree rules developed using a combination of inter-annual and intra-annual NDVI temporal metrics. Validation results showed that the change detection was accurate, with an overall accuracy of 88.9% &amp;#177; 1.0%, and a kappa coefficient of 0.86, and the time of change was successfully retrieved, with 85.2% of the change pixels attributed to within a 2-year deviation.&lt;/strong&gt;&lt;/p&gt;


2011 ◽  
Vol 25 (2) ◽  
pp. 150-163 ◽  
Author(s):  
Yan-feng Jia ◽  
Ju-ying Jiao ◽  
Ning Wang ◽  
Zhen-guo Zhang ◽  
Wen-juan Bai ◽  
...  

2018 ◽  
Vol 38 (11) ◽  
Author(s):  
李航 LI Hang ◽  
严方晨 YAN Fangchen ◽  
焦菊英 JIAO Juying ◽  
唐柄哲 TANG Bingzhe ◽  
张意奉 ZHANG Yifeng

2009 ◽  
Vol 19 (6) ◽  
pp. 707-718 ◽  
Author(s):  
Zhiqiang Wang ◽  
Baoyuan Liu ◽  
Yan Zhang

Sign in / Sign up

Export Citation Format

Share Document