scholarly journals Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

2017 ◽  
Vol 553 ◽  
pp. 199-213 ◽  
Author(s):  
Chris M. DeBeer ◽  
John W. Pomeroy
1981 ◽  
Vol 12 (4-5) ◽  
pp. 265-274 ◽  
Author(s):  
A. Rango ◽  
J. Martinec

Results of runoff simulations from various basins using a snowmelt runoff model were analyzed in order to predict the accuracy of simulations in future applications of the model. It was found that the model can be applied to nearly any mountainous basin where snowmelt runoff is an important factor if input data on temperature, precipitation, and snow cover are available. The simulation accuracy will depend on the quality of the input data as well as on the density of observations, size of the basin, care in determination of the recession coefficient, and amount of precipitation during snowmelt. Most accurate simulations will result when: 1) temperature and precipitation are recorded at the basin mean elevation; 2) snow cover observations are available once per week; 3) several climatic stations are available for large basins; and 4) a few years of runoff records exist for determination of the recession coefficient. Decreases in simulation accuracy will be expected as these optimum conditions are compromised, however, acceptable simulations will result with the following minimum conditions: 1) temperature and precipitation data are available in the general vicinity of the basin; and 2) snow cover observations are available 2-3 times during the snowmelt season. The availability of satellite observations of snow cover extent has permitted successful application of the model to large basins.


2010 ◽  
Vol 14 (2) ◽  
pp. 339-350 ◽  
Author(s):  
L. S. Kuchment ◽  
P. Romanov ◽  
A. N. Gelfan ◽  
V. N. Demidov

Abstract. A technique of using satellite-derived data for constructing continuous snow characteristics fields for distributed snowmelt runoff simulation is presented. The satellite-derived data and the available ground-based meteorological measurements are incorporated in a physically based snowpack model. The snowpack model describes temporal changes of the snow depth, density and water equivalent (SWE), accounting for snow melt, sublimation, refreezing melt water and snow metamorphism processes with a special focus on forest cover effects. The remote sensing data used in the model consist of products include the daily maps of snow covered area (SCA) and SWE derived from observations of MODIS and AMSR-E instruments onboard Terra and Aqua satellites as well as available maps of land surface temperature, surface albedo, land cover classes and tree cover fraction. The model was first calibrated against available ground-based snow measurements and then applied to calculate the spatial distribution of snow characteristics using satellite data and interpolated ground-based meteorological data. The satellite-derived SWE data were used for assigning initial conditions and the SCA data were used for control of snow cover simulation. The simulated spatial distributions of snow characteristics were incorporated in a distributed physically based model of runoff generation to calculate snowmelt runoff hydrographs. The presented technique was applied to a study area of approximately 200 000 km2 including the Vyatka River basin with catchment area of 124 000 km2. The correspondence of simulated and observed hydrographs in the Vyatka River are considered as an indicator of the accuracy of constructed fields of snow characteristics and as a measure of effectiveness of utilizing satellite-derived SWE data for runoff simulation.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 130
Author(s):  
Sebastian Rößler ◽  
Marius S. Witt ◽  
Jaakko Ikonen ◽  
Ian A. Brown ◽  
Andreas J. Dietz

The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR’s Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM).


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


1983 ◽  
Vol 14 (5) ◽  
pp. 257-266 ◽  
Author(s):  
B. Dey ◽  
D. C. Goswami ◽  
A. Rango

The results presented in this study indicate the possibility of seasonal runoff prediction when satellite-derived basin snow-cover data are related to point source river discharge data for a number of years. NOAA-VHRR satellite images have been used to delineate the areal extent of snow cover for early April over the Indus and Kabul River basins in Pakistan. Simple photo-interpretation techniques, using a zoom transfer scope, were employed in transferring satellite snow-cover boundaries onto base map overlays. A linear regression model with April 1 through July 31 seasonal runoff (1974-1979) as a function of early April snow cover explains 73% and 82% of the variance, respectively, of the measured flow in the Indus and Kabul Rivers. The correlation between seasonal runoff and snow cover is significant at the 97% level for the Indus River and at the 99% level for the Kabul River. Combining Rango et al.'s (1977) data for 1969-73 with the above period, the April snow cover explains 60% and 90% of the variance, respectively, of the measured flow in the Indus and Kabul Rivers. In an attempt to improve the Indus relationship, a multiple regression model, with April 1 through July 31, 1969-79, seasonal runoff in the Indus River as a function of early April snow-covered area of the basin and concurrent runoff in the adjoining Kabul River, explains 79% of the variability in flow. Moreover, a significant reduction (27%) in the standard error of estimate results from using the multi-variate model. For each year of the study period, 1969-79, a separate multiple regression equation is developed dropping the data for the year in question from the data-base and using those for the rest of the years. The snow cover area and concurrent runoff data are then used to estimate the snowmelt runoff for that particular year.The difference between the estimated and observed dircharge values averaged over the 11 year study period is 10%. Satellite derived snow-covered area is the best available input for snowmelt-runoff estimation in remote, data sparse basins like the Indus and Kabul Rivers. The study has operational relevance to water resource planning and management in the Himalayan region.


2009 ◽  
Vol 13 (10) ◽  
pp. 1897-1906 ◽  
Author(s):  
Q. Zhao ◽  
Z. Liu ◽  
B. Ye ◽  
Y. Qin ◽  
Z. Wei ◽  
...  

Abstract. This study linked the Weather Research and Forecasting (WRF) modelling system and the Distributed Hydrology Soil Vegetation Model (DHSVM) to forecast snowmelt runoff. The study area was the 800 km2 Juntanghu watershed of the northern slopes of Tianshan Mountain Range. This paper investigated snowmelt runoff forecasting models suitable for meso-microscale application. In this study, a limited-region 24-h Numeric Weather Forecasting System was formulated using the new generation atmospheric model system WRF with the initial fields and lateral boundaries forced by Chinese T213L31 model. Using the WRF forecasts, the DHSVM hydrological model was used to predict 24 h snowmelt runoff at the outlet of the Juntanghu watershed. Forecasted results showed a good similarity to the observed data, and the average relative error of maximum runoff simulation was less than 15%. The results demonstrate the potential of using a meso-microscale snowmelt runoff forecasting model for forecasting floods. The model provides a longer forecast period compared with traditional models such as those based on rain gauges or statistical forecasting.


Sign in / Sign up

Export Citation Format

Share Document