Spatiotemporal variability of soil–water content at different depths in fields mulched with gravel for different planting years

2020 ◽  
Vol 590 ◽  
pp. 125253
Author(s):  
Wenju Zhao ◽  
Zhen Cui ◽  
Changquan Zhou
2020 ◽  
Author(s):  
Roberto Passalacqua ◽  
Rossella Bovolenta ◽  
Bianca Federici ◽  
Alessandro Iacopino

<p>Soil water content is often a landslide’s trigger factor, in particular the shallow ones. Although there is no simple relationship between the water content into the soil and the hydraulic conditions of the slopes at the depths at which the landslides develop, the knowledge of the actual soil moisture is fundamental for the study of landslides, thus, it should be monitored.<br>The LAMP (LAndslide Monitoring and Predicting) system is employed in the INTERREG-ALCOTRA project called AD-VITAM. LAMP (Bovolenta et al., 2016) was yet formulated for the analysis and forecasting of landslides triggered by rain. It adopts a physically based Integrated Hydrological Geotechnical (IHG) model (Passalacqua et al., 2016) and is implemented in GIS. In this Project, the IHG model is fed by data measured using a Wireless Sensor Network (WSN), this formed by low-cost and self-sufficient sensors. The WSN may gather rainfall, temperature, surface’s displacement data (these by mass-market GNSS receivers in RTK) and, in this case, soil water content (by capacitive sensors).<br>The WaterScout SM100 capacitive sensors were lab-analyzed then, recognized as satisfactory, installed on-site together with their related equipment. These sensors connect to a “Sensor Pup”, which has four available channels; therefore, four sensors are installed at each node, at different depths from ground-level, in order to achieve a vertical soil-moisture profile and the rate of infiltration.<br>The selection of the most suitable spots for the water content soil-sensors’ installations depends on the presence of shallow soil layers and of the radio signal emission-reception’s too.<br>The sensors may be set up both in vertical or horizontal direction. In general, the vertical installation is preferable. This implies the creation of small adjacent vertical holes, each one reaching a different depth, where the sensors are singularly pushed. Alternatively, the horizontal one may be adopted, by the opening of a small trench where the sensors are manually inserted at different depths, along a quasi-vertical vertical line. The full contact between the soil and the sensors is always verified, immediately after the installation, using a directly connected FieldScout reader to any single sensor. Furthermore, it is necessary to protect the emerging cables and to avoid preferential ways for water infiltration along the wiring lines.<br>The monitoring networks, installed at the two Italian sites of Mendatica and Ceriana, are currently providing informations in real-time. The data acquired at five nodes, distributed at each of these two sites (40 sensors in total), are currently relayed on a specific web-portal by a GSM connected Retriever-Modem, marking the evolutions of soil moisture profiles at depths between 10 and 85 cm from ground level: these continuous data allow the analysis of the infiltration and evapotranspiration phenomena. Moreover, a correlation between the soil moisture contents and the local displacements is made possible. Finally, a specific calibration of the SM100 sensors’ in relation to the on-site soil types is in progress.</p>


2012 ◽  
Vol 212-213 ◽  
pp. 3-9
Author(s):  
Qi Rui Wang ◽  
Jun Gao

Measured the cover soil water content in soil layer 0~30cm of different agroforestry landscape types in Jinghe river with TDR, the landscape types including sloping cropland, apple orchard, apple-clover system, land under forest and grass changed from grain crop and black locust forest. Analyze the distribution characteristic and spatiotemporal variability of the cover soil water. The result showed that the soil water has renewed in a certain extent after a rain period in 1.5 m soil profile; the soil water content is gradually increased from the top of to the bottom of the slope under the affection of the slope location and plant category. The theory model of semivariogram for cover soil water content before rain season and after season, the value of nugget is changed no obviously , and they are 0.25 and 0.30; ranges is 99.7 m and 87.6 m. And the results indicated that soil moisture exhibited high fractal dimensions and clear spatial autocorrelation. The fractal dimensions are 1.71 and 1.74, variogram is main autocorrelation. During rain season the theory semivariogram model is linear, the spatiotemporal variability of soil water content becomes higher with the increase in distance, and its fractal dimension is 1.40.


2020 ◽  
Author(s):  
Brivaldo Gomes de Almeida ◽  
Ceres Duarte Guedes Cabral de Almeida ◽  
Thaís Fernandes de Assunção ◽  
Bruno Campos Mantovanelli ◽  
José Coelho de Araújo Filho ◽  
...  

<p>Soil management, although intended to create favorable structural conditions for crop growth and development, without prior assessment of potential and limitations, has been one of the reasons for the degradation of natural resources. The effects on soil degradation and respective structural quality are generally evaluated by some physical soil attributes such as bulk density (BD), total porosity (TP) and soil penetration resistance (PR). The PR is recognized as a physical parameter that supports the identification of areas with different stages of compaction and thus can be used to define appropriate management for soil remediation. Besides, this parameter depends on intrinsic soil factors (texture, structure, and mineralogy) and soil water content (SWC). Therefore, PR increases with BD and decreases with SWC (gravimetric or volumetric). Thus, it is possible to establish the critical limit of PR (PR<sub>CL</sub>) associated with the value of SWC that limits the growth of plant roots. PR<sub>CL</sub> varies according to soil type and plant species, but 2.0 MPa is the value scientifically accepted as the critical value to limit the root growth. Thus, the paper aimed to evaluate the spatial and temporal variability of PR in a field cultivated with sugarcane, under the conventional tillage system. The research was carried out in the Carpina Sugarcane Experimental Station, Pernambuco, Brazil. A grid of 70 x 70 m was delineated at intervals of 10 m and in each point soil samples were collected in the layers 0 - 0.30 m and 0.30 - 0.60 m depth. Three samplings were done to determine gravimetric soil water content; the first after six months of subsoiling (Time 6) before harrowing and planting, the second after 12 months of subsoiling (Time 12, six months after harrowing and planting) and the last after 18 months of subsoiling, before harvesting (Time 18). In each sampling time, in situ PR tests were carried out with the Solo Track equipment (Falker® - Model PLG 5300) and the simultaneous values of gravimetric soil water content were determined and associated with the PR data. The results showed that soil water content had a weak degree of spatial dependence, indicating the need to increase the number of samples. On the other hand, the PR values showed that the subsoiling did not promote a positive effect on the soil physical quality, with values above the PR<sub>CL</sub> for root development in Time 6 (2.42 MPa), even if after one year the sugarcane root system acted positively, by reducing PR in Time 18 (1.04 MPa) below the critical value.</p>


2021 ◽  
Author(s):  
Sarah Bereswill ◽  
Nicole Rudolph-Mohr ◽  
Sascha E Oswald

Abstract PurposeRhizosphere respiration strongly affects CO2 concentration within vegetated soils and resulting fluxes to the atmosphere. Respiration in the rhizosphere exhibits high spatiotemporal variability that may be linked to root type, but also to small-scale variation of soil water content altering gas transport dynamics in the soil. We address spatiotemporal dynamics of CO2 and O2 concentration in the rhizosphere via non-invasive in-situ imaging.MethodsOptodes sensitive to CO2 and O2 were applied to non-invasively measure in-situ rhizosphere CO2 and O2 concentration of white lupine (Lupinus albus) grown in slab-shaped glass rhizotrons. We monitored CO2 concentration over the course of 16 days at constant water content and also performed a drying-rewetting experiment to explore sensitivity of CO2 and O2 concentration to soil moisture changes. ResultsHotspots of respiration formed around cluster roots and CO2 concentration locally increased to > 20 % pCO2 (CO2 partial pressure). After rewetting the soil, cluster roots consumed available O2 significantly faster compared to non-cluster lateral roots. In wet soil, CO2 accumulation zones extended up to 9.5 mm from the root surface compared to 0.3-1 mm in dry soil.ConclusionResults from this imaging experiment indicate that respiratory activity differs substantially within the root system of a plant individual and that cluster roots are hotspots of respiration. As rhizosphere CO2 and O2 concentration was strongly sensitive to soil water content and its variation, we recommend monitoring the soil water content prior and during the measurement of rhizosphere respiration.


1999 ◽  
Vol 9 (2) ◽  
pp. 258-261 ◽  
Author(s):  
Mongi Zekri ◽  
Lawrence R. Parsons

The development of improved equipment for measuring soil water content has created the need for a better understanding of soil water drainage and movement. Without this understanding, it is impossible to know if an observed decrease in soil water content at a particular depth is due to evapotranspiration and/or continual drainage. This study was designed to determine the length of time for different soil depths of a Florida Candler fine sand to reach field capacity. A field site with no vegetation on it was saturated with water and covered with a plastic tarp to prevent evaporation. At 6- to 24-hour intervals, soil water content was measured gravimetrically in the top 15 cm (6 inches) and with the neutron probe from 30 to 150 cm (12 to 59 inches). The 15-cm depth reached field capacity after one day, but it took 4 days for the 30- to 150-cm depths to reach field capacity because of rewetting by water draining form higher horizons. The time required for drainage to stop must be considered when evaluating changes in soil water status at a particular depth. This is important for distinguishing between plant water uptake and drainage for different soil layers.Soil water characteristic curves of undisturbed soil samples, bulkdensity, porosity, and field capacity in situ were also determined for this soil. Field capacity values found in situ were compared to those found using the pressure plate technique. Laboratory values were higher than field values because the laboratory data were closer to hydrostatic conditions than the field data and the degree of saturation provided during wetting of the cores was higher in the laboratory. Water was not readily retained in Candler fine sand because the soil was very porous, infiltration rates were high, drainage was rapid, and water storage capacity was limited. Using field measurements, field capacity values of soil at different depths ranged from 4.8% to 6.2% volume for Candler fine sand. These are considered to be low values when compared to other types of soil.


Author(s):  
Jinbai Huang ◽  
Jiawei Wen ◽  
Chaofan Zhu ◽  
Diwen Luo

A regional grassland with Bermudagrass in Yangzhou City of China was adopted as the study location. Based on the analysis of the different rainfall events and soil water content data in the same periods, the response characteristics of infiltration to rainfall were revealed in a certain degree. The surface resistance parameters (rs) are calibrated according to the soil water content at the depths of a range for 0-30 cm and of the root layer (0-10 cm). Penman-Monteith (P-M) equation was adopted to estimated the hourly evapotranspiration (ET) over the Bermudagrass lawn of the soil layers for the depths of 0-30 cm (ET30) and 0-10 cm (ET10), respectively. Applicability of HYDRUS-1D model for simulating soil water content at different depths was validated. The results indicated that the infiltration depth generally varies with the rainfall event grade, and on the whole, the infiltration depth increases with the improvement of amount of rainfall; the response time for the soil water content in root layer is much shorter with the less soil water content in the topsoil (0-5.5 cm); the increase rate of soil water content raised with increasing of rainfall intensity in the state of unsaturation; ET10 accounts for about 78% of ET30, which demonstrates the water consumed by ET is mainly provided by the soil water in the root layer. the rationality of the results of different rainfall events and infiltration depth achieved by the analysis of the observed data were verified via numerical simulation using Hydrus-1D.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


Sign in / Sign up

Export Citation Format

Share Document