Design of a Multilevel TDR Probe for Measuring Soil Water Content at Different Depths

2013 ◽  
pp. 1451-1460 ◽  
2020 ◽  
Author(s):  
Roberto Passalacqua ◽  
Rossella Bovolenta ◽  
Bianca Federici ◽  
Alessandro Iacopino

<p>Soil water content is often a landslide’s trigger factor, in particular the shallow ones. Although there is no simple relationship between the water content into the soil and the hydraulic conditions of the slopes at the depths at which the landslides develop, the knowledge of the actual soil moisture is fundamental for the study of landslides, thus, it should be monitored.<br>The LAMP (LAndslide Monitoring and Predicting) system is employed in the INTERREG-ALCOTRA project called AD-VITAM. LAMP (Bovolenta et al., 2016) was yet formulated for the analysis and forecasting of landslides triggered by rain. It adopts a physically based Integrated Hydrological Geotechnical (IHG) model (Passalacqua et al., 2016) and is implemented in GIS. In this Project, the IHG model is fed by data measured using a Wireless Sensor Network (WSN), this formed by low-cost and self-sufficient sensors. The WSN may gather rainfall, temperature, surface’s displacement data (these by mass-market GNSS receivers in RTK) and, in this case, soil water content (by capacitive sensors).<br>The WaterScout SM100 capacitive sensors were lab-analyzed then, recognized as satisfactory, installed on-site together with their related equipment. These sensors connect to a “Sensor Pup”, which has four available channels; therefore, four sensors are installed at each node, at different depths from ground-level, in order to achieve a vertical soil-moisture profile and the rate of infiltration.<br>The selection of the most suitable spots for the water content soil-sensors’ installations depends on the presence of shallow soil layers and of the radio signal emission-reception’s too.<br>The sensors may be set up both in vertical or horizontal direction. In general, the vertical installation is preferable. This implies the creation of small adjacent vertical holes, each one reaching a different depth, where the sensors are singularly pushed. Alternatively, the horizontal one may be adopted, by the opening of a small trench where the sensors are manually inserted at different depths, along a quasi-vertical vertical line. The full contact between the soil and the sensors is always verified, immediately after the installation, using a directly connected FieldScout reader to any single sensor. Furthermore, it is necessary to protect the emerging cables and to avoid preferential ways for water infiltration along the wiring lines.<br>The monitoring networks, installed at the two Italian sites of Mendatica and Ceriana, are currently providing informations in real-time. The data acquired at five nodes, distributed at each of these two sites (40 sensors in total), are currently relayed on a specific web-portal by a GSM connected Retriever-Modem, marking the evolutions of soil moisture profiles at depths between 10 and 85 cm from ground level: these continuous data allow the analysis of the infiltration and evapotranspiration phenomena. Moreover, a correlation between the soil moisture contents and the local displacements is made possible. Finally, a specific calibration of the SM100 sensors’ in relation to the on-site soil types is in progress.</p>


1999 ◽  
Vol 9 (2) ◽  
pp. 258-261 ◽  
Author(s):  
Mongi Zekri ◽  
Lawrence R. Parsons

The development of improved equipment for measuring soil water content has created the need for a better understanding of soil water drainage and movement. Without this understanding, it is impossible to know if an observed decrease in soil water content at a particular depth is due to evapotranspiration and/or continual drainage. This study was designed to determine the length of time for different soil depths of a Florida Candler fine sand to reach field capacity. A field site with no vegetation on it was saturated with water and covered with a plastic tarp to prevent evaporation. At 6- to 24-hour intervals, soil water content was measured gravimetrically in the top 15 cm (6 inches) and with the neutron probe from 30 to 150 cm (12 to 59 inches). The 15-cm depth reached field capacity after one day, but it took 4 days for the 30- to 150-cm depths to reach field capacity because of rewetting by water draining form higher horizons. The time required for drainage to stop must be considered when evaluating changes in soil water status at a particular depth. This is important for distinguishing between plant water uptake and drainage for different soil layers.Soil water characteristic curves of undisturbed soil samples, bulkdensity, porosity, and field capacity in situ were also determined for this soil. Field capacity values found in situ were compared to those found using the pressure plate technique. Laboratory values were higher than field values because the laboratory data were closer to hydrostatic conditions than the field data and the degree of saturation provided during wetting of the cores was higher in the laboratory. Water was not readily retained in Candler fine sand because the soil was very porous, infiltration rates were high, drainage was rapid, and water storage capacity was limited. Using field measurements, field capacity values of soil at different depths ranged from 4.8% to 6.2% volume for Candler fine sand. These are considered to be low values when compared to other types of soil.


Author(s):  
Jinbai Huang ◽  
Jiawei Wen ◽  
Chaofan Zhu ◽  
Diwen Luo

A regional grassland with Bermudagrass in Yangzhou City of China was adopted as the study location. Based on the analysis of the different rainfall events and soil water content data in the same periods, the response characteristics of infiltration to rainfall were revealed in a certain degree. The surface resistance parameters (rs) are calibrated according to the soil water content at the depths of a range for 0-30 cm and of the root layer (0-10 cm). Penman-Monteith (P-M) equation was adopted to estimated the hourly evapotranspiration (ET) over the Bermudagrass lawn of the soil layers for the depths of 0-30 cm (ET30) and 0-10 cm (ET10), respectively. Applicability of HYDRUS-1D model for simulating soil water content at different depths was validated. The results indicated that the infiltration depth generally varies with the rainfall event grade, and on the whole, the infiltration depth increases with the improvement of amount of rainfall; the response time for the soil water content in root layer is much shorter with the less soil water content in the topsoil (0-5.5 cm); the increase rate of soil water content raised with increasing of rainfall intensity in the state of unsaturation; ET10 accounts for about 78% of ET30, which demonstrates the water consumed by ET is mainly provided by the soil water in the root layer. the rationality of the results of different rainfall events and infiltration depth achieved by the analysis of the observed data were verified via numerical simulation using Hydrus-1D.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document