Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods

2020 ◽  
Vol 591 ◽  
pp. 125286 ◽  
Author(s):  
Zhijun Chen ◽  
Zhenchuang Zhu ◽  
Hao Jiang ◽  
Shijun Sun
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

<p>Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.</p><p> </p><p>We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km<sup>2</sup> contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).</p><p> </p><p>Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.</p>


2019 ◽  
Vol 11 (2) ◽  
pp. 196 ◽  
Author(s):  
Omid Ghorbanzadeh ◽  
Thomas Blaschke ◽  
Khalil Gholamnia ◽  
Sansar Meena ◽  
Dirk Tiede ◽  
...  

There is a growing demand for detailed and accurate landslide maps and inventories around the globe, but particularly in hazard-prone regions such as the Himalayas. Most standard mapping methods require expert knowledge, supervision and fieldwork. In this study, we use optical data from the Rapid Eye satellite and topographic factors to analyze the potential of machine learning methods, i.e., artificial neural network (ANN), support vector machines (SVM) and random forest (RF), and different deep-learning convolution neural networks (CNNs) for landslide detection. We use two training zones and one test zone to independently evaluate the performance of different methods in the highly landslide-prone Rasuwa district in Nepal. Twenty different maps are created using ANN, SVM and RF and different CNN instantiations and are compared against the results of extensive fieldwork through a mean intersection-over-union (mIOU) and other common metrics. This accuracy assessment yields the best result of 78.26% mIOU for a small window size CNN, which uses spectral information only. The additional information from a 5 m digital elevation model helps to discriminate between human settlements and landslides but does not improve the overall classification accuracy. CNNs do not automatically outperform ANN, SVM and RF, although this is sometimes claimed. Rather, the performance of CNNs strongly depends on their design, i.e., layer depth, input window sizes and training strategies. Here, we conclude that the CNN method is still in its infancy as most researchers will either use predefined parameters in solutions like Google TensorFlow or will apply different settings in a trial-and-error manner. Nevertheless, deep-learning can improve landslide mapping in the future if the effects of the different designs are better understood, enough training samples exist, and the effects of augmentation strategies to artificially increase the number of existing samples are better understood.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.


2017 ◽  
Author(s):  
Fadhl M Alakwaa ◽  
Kumardeep Chaudhary ◽  
Lana X Garmire

ABSTRACTMetabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+) and 67 negative estrogen receptor (ER-), to test the accuracies of autoencoder, a deep learning (DL) framework, as well as six widely used machine learning models, namely Random Forest (RF), Support Vector Machines (SVM), Recursive Partitioning and Regression Trees (RPART), Linear Discriminant Analysis (LDA), Prediction Analysis for Microarrays (PAM), and Generalized Boosted Models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER-patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value<0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion & absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accurcy (AUC=0.93) and better revelation of disease biology. We encourage the adoption of autoencoder based deep learning method in the metabolomics research community for classification.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7078
Author(s):  
Yueting Wang ◽  
Minzan Li ◽  
Ronghua Ji ◽  
Minjuan Wang ◽  
Lihua Zheng

Visible-near-infrared spectrum (Vis-NIR) spectroscopy technology is one of the most important methods for non-destructive and rapid detection of soil total nitrogen (STN) content. In order to find a practical way to build STN content prediction model, three conventional machine learning methods and one deep learning approach are investigated and their predictive performances are compared and analyzed by using a public dataset called LUCAS Soil (19,019 samples). The three conventional machine learning methods include ordinary least square estimation (OLSE), random forest (RF), and extreme learning machine (ELM), while for the deep learning method, three different structures of convolutional neural network (CNN) incorporated Inception module are constructed and investigated. In order to clarify effectiveness of different pre-treatments on predicting STN content, the three conventional machine learning methods are combined with four pre-processing approaches (including baseline correction, smoothing, dimensional reduction, and feature selection) are investigated, compared, and analyzed. The results indicate that the baseline-corrected and smoothed ELM model reaches practical precision (coefficient of determination (R2) = 0.89, root mean square error of prediction (RMSEP) = 1.60 g/kg, and residual prediction deviation (RPD) = 2.34). While among three different structured CNN models, the one with more 1 × 1 convolutions preforms better (R2 = 0.93; RMSEP = 0.95 g/kg; and RPD = 3.85 in optimal case). In addition, in order to evaluate the influence of data set characteristics on the model, the LUCAS data set was divided into different data subsets according to dataset size, organic carbon (OC) content and countries, and the results show that the deep learning method is more effective and practical than conventional machine learning methods and, on the premise of enough data samples, it can be used to build a robust STN content prediction model with high accuracy for the same type of soil with similar agricultural treatment.


2020 ◽  
Vol 12 (6) ◽  
pp. 914 ◽  
Author(s):  
Mahdieh Danesh Yazdi ◽  
Zheng Kuang ◽  
Konstantina Dimakopoulou ◽  
Benjamin Barratt ◽  
Esra Suel ◽  
...  

Estimating air pollution exposure has long been a challenge for environmental health researchers. Technological advances and novel machine learning methods have allowed us to increase the geographic range and accuracy of exposure models, making them a valuable tool in conducting health studies and identifying hotspots of pollution. Here, we have created a prediction model for daily PM2.5 levels in the Greater London area from 1st January 2005 to 31st December 2013 using an ensemble machine learning approach incorporating satellite aerosol optical depth (AOD), land use, and meteorological data. The predictions were made on a 1 km × 1 km scale over 3960 grid cells. The ensemble included predictions from three different machine learners: a random forest (RF), a gradient boosting machine (GBM), and a k-nearest neighbor (KNN) approach. Our ensemble model performed very well, with a ten-fold cross-validated R2 of 0.828. Of the three machine learners, the random forest outperformed the GBM and KNN. Our model was particularly adept at predicting day-to-day changes in PM2.5 levels with an out-of-sample temporal R2 of 0.882. However, its ability to predict spatial variability was weaker, with a R2 of 0.396. We believe this to be due to the smaller spatial variation in pollutant levels in this area.


Sign in / Sign up

Export Citation Format

Share Document