Determining the accuracy of different water infiltration models in lands under wheat and bean cultivation

2021 ◽  
pp. 127122
Author(s):  
Ahmad Khasraei ◽  
Hamid Zare Abyaneh ◽  
Mehdi Jovzi ◽  
Mohammad Albaji
Soil Research ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 360 ◽  
Author(s):  
Yongyong Zhang ◽  
Pute Wu ◽  
Xining Zhao ◽  
Ping Li

The soil water dynamic process is critical for the design, management, and evaluation of ridge–furrow tillage in the semi-arid region of the Loess Plateau. The aim of this study was to determine the effectual infiltration variables, to evaluate the performance of four classical infiltration models, and to investigate the effect of those variables on the infiltration characteristics in a ridge–furrow configuration. Sixteen experimental treatments with two replications were conducted to monitor furrow infiltration in four types of Loess Plateau soils. The path analysis method was applied to quantify the effects of variables—opportunity time (T), initial soil water content (Q), bulk density (P), flow section area (S), and wetted perimeter (Wp) as independent variables—on cumulative infiltration (I). The results revealed that the direct effects of variables Wp, P, T, Q, and S on I were 0.751, –0.649, 0.291, –0.251, and –0.123, respectively. Variables Wp and P were the effectual components of furrow infiltration. The direct effect and total effect of Q on I were relatively minor compared with the other variables. The performance of four infiltration models (Philip model, Kostiakov–Lewis model, Kostiakov model, and Horton model) was investigated on the basis of evaluation indices. The Kostiakov–Lewis infiltration model with three parameters provided the best description of the relationship between cumulative infiltration and time. The influence of Wp on the constant coefficient k of the Kostiakov–Lewis model was significant. A furrow infiltration model taking Wp into consideration was developed. Validations in different Wp of two other soil types indicated that the soil water infiltration characteristics could be effectively simulated by the effectual variable based model for an uncropped ridge–furrow system. The information obtained from this research is useful in designing irrigation schemes and field management for ridge–furrow tillage.


2018 ◽  
Vol 10 (3) ◽  
pp. 1237-1263 ◽  
Author(s):  
Mehdi Rahmati ◽  
Lutz Weihermüller ◽  
Jan Vanderborght ◽  
Yakov A. Pachepsky ◽  
Lili Mao ◽  
...  

Abstract. In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (∼ 76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76 % of the experimental sites with agricultural land use as the dominant type (∼ 40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it.


Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 63 ◽  
Author(s):  
Karolina Villagra-Mendoza ◽  
Rainer Horn

Biochar impacts soil-water related processes such as infiltration and contributes to the hydrological response of catchments. The aim of this work is to determine the impact of wetting and drying conditions on the infiltration behavior of two biochar amendments and to validate the performance of three infiltration models: Kostiakov, Horton, and Philips. Two materials, sand and a sandy loam, were mixed with 0%, 2.5%, and 5% (by dry wt.) mango wood biochar produced at a highest heating rate of 600 °C and with a particle size of <63 μm. A sequence of four wetting and drying cycles were simulated. In each cycle, infiltration was measured. We found that biochar addition decreased infiltration because the formation of narrower pores reduced infiltration capacity. The higher the biochar dosage, the more resilient the treatment became concerning the changes on the water infiltrated. Repetitive wetting and drying cycles resulted in a reconfiguration of structural pores affecting the transport of water and air. The infiltration models of Kostiakov and Horton could predict the infiltration dynamics in the amended materials, although they show some instabilities along the WD cycles.


2021 ◽  
Author(s):  
Maryam Molayem ◽  
S A. Abtahi ◽  
M. Jafarinia ◽  
J. Yasrebi

Abstract Modeling soil water infiltration at the field scale with ruler of calcareous, saline and sodic conditions is important for a better understanding of infiltration processes in these soils and future of infiltration modeling. The aim of the present study was to derive and evaluate soil water infiltration models for some calcareous, saline and sodic soils in Marvdasht plain, southern of Iran. The infiltration data was measured in 72 locations at the regional scale with 3 replications. In each location, the basic soil properties were also measured. The multiple linear regression (MLR) and feed-forward multilayer perceptron artificial neural networks (ANN) model were used to estimate cumulative soil water infiltration at different time. The results performance of water infiltration models such as Kostiakov, Kostiakov–Lewis, USDA-NRCS, Philip, Horton and Green-Ampt models according to the mean R2, ME, RMSE and SDRMSE indices for all soils showed the Kostiakov–Lewis model provided the most accurate predictions. Moreover, the results showed that the derived ANN models at different times with a R2 of 0.438-0.661 and a RMSE of 0.977-17.111 performed better than MLR model. There would be great interest to improve the cumulative soil water infiltration in site-specific soil utilization, management and protection of the environment by MLR and ANN methods.


2018 ◽  
Author(s):  
Mehdi Rahmati ◽  
Lutz Weihermüller ◽  
Jan Vanderborght ◽  
Yakov A. Pachepsky ◽  
Lili Mao ◽  
...  

Abstract. In this paper, we present and analyze a global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and USA. In addition to its global spatial coverage, the collected infiltration curves cover a time span of research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use were gathered along with the infiltration data, which makes the database valuable for the development of pedo-transfer functions for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76 %) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on the land use is available for 76 % of experimental sites with agricultural land use as the dominant type (~40 %). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for use by public domain only and can be copied freely by referencing it. Supplementary data are available at doi:10.1594/PANGAEA.885492. Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend/update the SWIG by uploading new data to it.


2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


Sign in / Sign up

Export Citation Format

Share Document