Regeneration and pattern formation in planarians. II. and role of cell movements in blastema formation

Development ◽  
1989 ◽  
Vol 107 (1) ◽  
pp. 69-76 ◽  
Author(s):  
E. Salo ◽  
J. Baguna

In planarians, blastema cells do not divide, and growth blastema is thought to result from the steady wound epithelium, of undifferentiated cells produced in the stump. However, whether these cells come only sources or whether cells placed far from the wound can participate, after long-range migrations, in the still uncertain. To study this problem, we have parameters of the process of regeneration: cell growth; number of cells produced by mitosis in the wound (postblastema); and rates of movement undifferentiated cells using grafting procedures with chromosomal markers. The results show that: (1) cells area spread (move) at higher rates than cells placed (90–140_mday-1 versus 40–50_mday-1); (2) cells than 500_m from the wound boundary are hardly 5-day-old blastemata; and (3) the number of cells within a 200–300_m postblastema area around the wound explain, provided their rates of movement are taken increasing number of blastema cells. From this, it is blastema cells in planarians originate from local mitotic activity jointly with local cell movement postblastema area around the wound match the blastema cells during regeneration. The implications for blastema growth and pattern formation mechanisms

1987 ◽  
Vol 65 (8) ◽  
pp. 739-749 ◽  
Author(s):  
Roy A. Tassava ◽  
David J. Goldhamer ◽  
Bruce L. Tomlinson

Data from pulse and continuous labeling with [3H]thymidine and from studies with monoclonal antibody WE3 have led to the modification of existing models and established concepts pertinent to understanding limb regeneration. Not all cells of the adult newt blastema are randomly distributed and actively progressing through the cell cycle. Instead, many cells are in a position that we have designated transient quiescence (TQ) and are not actively cycling. We postulate that cells regularly leave the TQ population and enter the actively cycling population and vice versa. The size of the TQ population may be at least partly determined by the quantity of limb innervation. Larval Ambystoma may have only a small or nonexisting TQ, thus accounting for their rapid rate of regeneration. Examination of reactivity of monoclonal antibody WE3 suggests that the early wound epithelium, which is derived from skin epidermis, is later replaced by cells from skin glands concomitant with blastema formation. WE3 provides a useful tool to further investigate the regenerate epithelium.


Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 63-80
Author(s):  
Emili Saló ◽  
Jaume Baguñà

Mitotic activity during regeneration in the planarian Dugesia (G) tigrina shows a biphasic pattern, with a first maximum at 4–12 h, a second and higher maximum at 2–4 days, and a relative minimum in between. The first peak is mainly due to pre-existing G2 cells entering mitosis shortly after cutting, whereas the second maximum is due to cells that divide after going through the S period from the onset of regeneration. From a spatial point of view, the highest mitotic values are found in stump (postblastema) regions near the wound (0–300 µm), though regions far from it also show increased mitotic values but always lower overall values. As regeneration continues the postblastema maximum shifts slightly to more proximal regions. In contrast, no mitosis has been found within the blastema, even though the number of blastema cells increases steadily during regeneration. These results suggest that blastema in planarians forms through an early accumulation of undifferentiated cells at the wound boundary, and grows by the continuous local migration of new undifferentiated cells from the stump to the base of blastema. The results obtained demonstrate that blastema formation in planarians occurs through mechanisms somewhat different to those shown to occur in the classical epimorphic models of regeneration (Annelida, Insecta, Amphibia), and suggest that planarian regeneration could represent an intermediate stage between morphallactic and epimorphic modalities of regeneration.


Development ◽  
1985 ◽  
Vol 89 (1) ◽  
pp. 57-70
Author(s):  
Emili Saló ◽  
Jaume Baguñà

One of the tenets of Wolff and Dubois' ‘neoblast theory’ of planarian regeneration (Wolff & Dubois, 1948) is that blastema is mainly formed by the accumulation of undifferentiated parenchymal cells (neoblasts) that can migrate, if needed, over long distances to the wound. That neoblasts migrate was claimed by these authors after partial X-irradiation, and total Xirradiation and grafting using planarian strains of different pigmentation. From this they suggested that migration of neoblasts is stimulated by the wound and directed towards it. To study the nature and extent of such ‘migration’ in intact and regenerating organisms, and in order to avoid the flaws of using pigmentation as a marker, we made grafts between sexual and asexual races of Dugesia(S)mediterranea that differ in a chromosomal marker, and between diploid and tetraploid biotypes of Dugesia(S)polychroa that differ in nuclear size. Also, fluorescent latex beads were used as cytoplasmic markers to follow ‘migration’ of differentiated cells. The hosts were irradiated or non-irradiated intact and regenerating organisms. The results show that: 1) movement of graft cells into host tissues occurs in intact organisms at a rate of ≃40µm/day, and that this increases up to ≃75µm/day in irradiated hosts; 2) movement of cells occurs evenly in all directions; 3) regeneration does not speed up rate of movement nor drives cells preferentially to the wound; 4) spreading of cells is mainly due to the movement of undifferentiated cells (neoblasts); and 5) higher rates of movement are correlated with higher mitotic indexes. From this, it is concluded that the so-called ‘migration’ of neoblasts is not a true cell migration but the result of the slow, even and progressive spreading of these cells mainly caused by random movements linked to cell proliferation. The implications of these results for blastema formation and the origin of blastema cells are discussed.


2021 ◽  
Author(s):  
Isha Ranadive ◽  
Sonam Patel ◽  
Siddharth Pai ◽  
Kashmira Khaire ◽  
Suresh Balakrishnan

The BMP and FGF pathways play a pivotal role in the successful regeneration of caudal fin of teleost fish. Individual inhibition of these pathways led to impaired caudal fin regeneration until the pharmacologic inhibitor of FGF (SU5402) and BMP (LDN193189) were metabolized off. Therefore, in the current study both these pathways were inhibited collectively wherein inhibition of BMP and FGF during the wound epithelium formation led to stalling of the process by bringing down the established levels of shh and runx2. In members of the treatment group, it was observed that, each blastema grows crouched rather than linear and the regrown lepidotrichia therefore remain tilted down. Amongst the other irregularities observed, the transition from epithelial to mesenchymal cells was found hindered due to down-regulation of snail and twist, brought about by BMP and FGF inhibition. Compromised expression of Snail and twist deranged the normal levels of cadherins causing disruption in the transition of cells. Lastly, blocking BMP and FGF delayed blastema formation and proliferation due to diminished levels of fgf2, fgf8, fgf10 and bmp6, while casp3 and casp9 levels remained heightened causing accelerated cell death. This study not only highlights the axial role of BMP and FGF pathways in regeneration but also accentuates the collaboration amongst the two. This ingenious coordination of signalling further reinforces the involvement of relaying messenger molecules between these crucial pathways.


Development ◽  
1989 ◽  
Vol 107 (1) ◽  
pp. 77-86 ◽  
Author(s):  
J. Baguna ◽  
E. Salo ◽  
C. Auladell

In most regenerating systems, blastema cells arise by dedifferentiation of functional tissue cells. In is still debatable whether dedifferentiated cells or a undifferentiated cells, the neoblasts, are the main cells. Moreover, it is unclear whether in the intact neoblasts are quiescent cells ‘reserved’ for serve as functional stem cells of all differentiated uncertainties partly stem from the failure to conventional labelling methods neoblasts from Here we describe a new approach to these problems regenerative and stem cell capabilities of purified differentiated cells when introduced, separately, into hosts. Introduction of neoblasts led to resumed blastema formation, and extended or complete survival differentiated cells, in contrast, never did so. neoblasts can be qualified as totipotent stem cells of blastema cells, while dedifferentiation does not either in intact or regenerating organisms. In strengthen the idea that different types of formation, linked to the tissular complexity of the present in the animal kingdom.


1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


2020 ◽  
Vol 15 (7) ◽  
pp. 607-613 ◽  
Author(s):  
Haiping Liu ◽  
Yiqian Liu ◽  
Xiaochuan Zhang ◽  
Xiaodong Wang

Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5‐year survival rate of early GC reaches 90%‐95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.


2018 ◽  
Vol 122 (6) ◽  
pp. 3669-3676 ◽  
Author(s):  
Masaki Itatani ◽  
Qing Fang ◽  
Kei Unoura ◽  
Hideki Nabika

1999 ◽  
Vol 77 (11) ◽  
pp. 1835-1837 ◽  
Author(s):  
Steven R Scadding

While the effects of exogenous retinoids on amphibian limb regeneration have been studied extensively, the role of endogenous retinoids is not clear. Hence, I wished to investigate the role of endogenous retinoic acid during axolotl limb regeneration. Citral is a known inhibitor of retinoic acid synthesis. Thus, I treated regenerating limbs of the larval axolotl Ambystoma mexicanum with citral. The result of this inhibition of retinoic acid synthesis was that limb regeneration became extremely irregular and hypomorphic, with serious pattern defects, or was inhibited altogether. I conclude that endogenous retinoic acid plays an important role in pattern formation during limb regeneration.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 53-63
Author(s):  
V. Gremigni ◽  
C. Miceli ◽  
I. Puccinelli

Specimens from a polyploid biotype of Dugesia lugubris s.l. were used to clarify the role and fate of germ cells during planarian regeneration. These specimens provide a useful karyological marker because embryonic and somatic cells (3n = 12) can be easily distinguished from male (2n = 8) and female (6n = 24) germ cells by their chromosome number. We succeed in demonstrating how primordial germ cells participate in blastema formation and take part in rebuilding somatic tissues. This evidence was obtained by cutting each planarian specimen twice at appropriate levels. The first aimed to induce primordial germ cells to migrate to the wound. The second cut was performed after complete regeneration and aimed to obtain a blastema from a cephalic or caudal area devoid of gonads. A karyological analysis of mitotic cells present in each blastema obtained after the second cut provided evidence that cells, originally belonging to the germ lines, are still present in somatic tissues even months after complete regeneration. The role of primordial germ cells in planarian regeneration was finally discussed in relation to the phenomenon of metaplasia or transdifferentiation.


Sign in / Sign up

Export Citation Format

Share Document