scholarly journals Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2

Author(s):  
Jaka Fajar Fatriansyah ◽  
Raihan Kenji Rizqillah ◽  
Muhamad Yusup Yandi ◽  
Fadilah ◽  
Muhamad Sahlan
2018 ◽  
Vol 18 (18) ◽  
pp. 1572-1587
Author(s):  
Nehad A. Abdel Latif ◽  
Rasha Z. Batran ◽  
Salwa F. Mohamed ◽  
Mohammed A. Khedr ◽  
Mohamed I. Kobeasy ◽  
...  

2021 ◽  
pp. 79-131
Author(s):  
Jangampalli Adi Pradeepkiran ◽  
Manne Munikumar ◽  
Kanipakam Hema ◽  
Pradeep Natarajan ◽  
S.B. Sainath

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2071
Author(s):  
Syed Sayeed Ahmad ◽  
Meetali Sinha ◽  
Khurshid Ahmad ◽  
Mohammad Khalid ◽  
Inho Choi

Alzheimer’s disease (AD) is the most common type of dementia and usually manifests as diminished episodic memory and cognitive functions. Caspases are crucial mediators of neuronal death in a number of neurodegenerative diseases, and caspase 8 is considered a major therapeutic target in the context of AD. In the present study, we performed a virtual screening of 200 natural compounds by molecular docking with respect to their abilities to bind with caspase 8. Among them, rutaecarpine was found to have the highest (negative) binding energy (−6.5 kcal/mol) and was further subjected to molecular dynamics (MD) simulation analysis. Caspase 8 was determined to interact with rutaecarpine through five amino acid residues, specifically Thr337, Lys353, Val354, Phe355, and Phe356, and two hydrogen bonds (ligand: H35-A: LYS353:O and A:PHE355: N-ligand: N5). Furthermore, a 50 ns MD simulation was conducted to optimize the interaction, to predict complex flexibility, and to investigate the stability of the caspase 8–rutaecarpine complex, which appeared to be quite stable. The obtained results propose that rutaecarpine could be a lead compound that bears remarkable anti-Alzheimer’s potential against caspase 8.


Sign in / Sign up

Export Citation Format

Share Document