Europium-based aminoclay containing carbon dots: A new visual fluorescence platform for visual point-of-care testing of tetracycline in various real samples

2022 ◽  
Vol 241 ◽  
pp. 118497
Author(s):  
Lei Jia ◽  
Xiangzhen Chen ◽  
Jun Xu ◽  
Lina Zhang ◽  
Xiyan Dong ◽  
...  
2020 ◽  
Vol 27 ◽  
Author(s):  
Yi Zhang

: Point-of-care (POC) testing decentralizes the diagnostic tests to the sites near the patient. Many POC tests rely microfluidic platforms for sample-to-answer analysis. Compared to other microfluidic systems, magnetic digital microfluidics demonstrate compelling advantages for POC diagnostics. In this review, we have examined the capability of magnetic digital microfluidics-based POC diagnostic platforms. More importantly, we have categorized POC settings into three classes based on “where is the point”, “who to care” and “how to test”, and evaluated the suitability of magnetic digital microfluidics in various POC settings. Furthermore, we have addressed other technical issues associated with POC testing such as controlled environment, sample-system interface, system integration and information connectivity. We hope this review would provide a guideline for the future development of magnetic digital microfluidics-based platforms for POC testing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1232
Author(s):  
Jiaqing Guo ◽  
Aikun Liu ◽  
Yutian Zeng ◽  
Haojie Cai ◽  
Shuai Ye ◽  
...  

The use of carbon dots (CDs) with dual emission based on ratiometric fluorescence has been attracting attention in recent times for more accurate ion detection since they help avoid interference from background noise, probe concentration, and complexity. Herein, novel dual-emission nitrogen-doped CDs (NCDs) were prepared by a simple method for Cu2+ and ClO- detection. The NCDs showed excellent anti-interference ability and selectivity for different emissions. In addition, a good linear relationship was observed between the fluorescence intensity (FI) of the NCD solutions in different emissions with Cu2+ (0–90 μM) and ClO- (0–75 μM). The limits of both Cu2+ detection and ClO- were very low, at 17.7 and 11.6 nM, respectively. The NCDs developed herein also showed a good recovery rate in water for Cu2+ and ClO− detection. Hence, they are expected to have a more extensive application prospect in real samples.


The Analyst ◽  
2021 ◽  
Author(s):  
Tianshu Chu ◽  
Huili Wang ◽  
Yumeng Qiu ◽  
Haoxi Luo ◽  
Bingfang He ◽  
...  

Wearable sensors play a key role in point-of-care testing (POCT) for its flexible and integration capability on sensitive physiological and biochemical sensing. Here, we present a multifunction wearable silk patch...


Sign in / Sign up

Export Citation Format

Share Document