scholarly journals Generalization performance of bipartite ranking algorithms with convex losses

2013 ◽  
Vol 404 (2) ◽  
pp. 528-536 ◽  
Author(s):  
Fangchao He ◽  
Hong Chen
2013 ◽  
Author(s):  
Wei Gao ◽  
Yungang Zhang ◽  
Yun Gao ◽  
Li Liang ◽  
Youming Xia

Author(s):  
Mark Newman

This chapter gives a discussion of search processes on networks. It begins with a discussion of web search, including crawlers and web ranking algorithms such as PageRank. Search in distributed databases such as peer-to-peer networks is also discussed, including simple breadth-first search style algorithms and more advanced “supernode” approaches. Finally, network navigation is discussed at some length, motivated by consideration of Milgram's letter passing experiment. Kleinberg's variant of the small-world model is introduced and it is shown that efficient navigation is possible only for certain values of the model parameters. Similar results are also derived for the hierarchical model of Watts et al.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110195
Author(s):  
Jianwen Guo ◽  
Xiaoyan Li ◽  
Zhenpeng Lao ◽  
Yandong Luo ◽  
Jiapeng Wu ◽  
...  

Fault diagnosis is of great significance to improve the production efficiency and accuracy of industrial robots. Compared with the traditional gradient descent algorithm, the extreme learning machine (ELM) has the advantage of fast computing speed, but the input weights and the hidden node biases that are obtained at random affects the accuracy and generalization performance of ELM. However, the level-based learning swarm optimizer algorithm (LLSO) can quickly and effectively find the global optimal solution of large-scale problems, and can be used to solve the optimal combination of large-scale input weights and hidden biases in ELM. This paper proposes an extreme learning machine with a level-based learning swarm optimizer (LLSO-ELM) for fault diagnosis of industrial robot RV reducer. The model is tested by combining the attitude data of reducer gear under different fault modes. Compared with ELM, the experimental results show that this method has good stability and generalization performance.


PLoS Medicine ◽  
2018 ◽  
Vol 15 (11) ◽  
pp. e1002683 ◽  
Author(s):  
John R. Zech ◽  
Marcus A. Badgeley ◽  
Manway Liu ◽  
Anthony B. Costa ◽  
Joseph J. Titano ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hongyan Zhang ◽  
Lanzhi Li ◽  
Chao Luo ◽  
Congwei Sun ◽  
Yuan Chen ◽  
...  

In efforts to discover disease mechanisms and improve clinical diagnosis of tumors, it is useful to mine profiles for informative genes with definite biological meanings and to build robust classifiers with high precision. In this study, we developed a new method for tumor-gene selection, the Chi-square test-based integrated rank gene and direct classifier (χ2-IRG-DC). First, we obtained the weighted integrated rank of gene importance from chi-square tests of single and pairwise gene interactions. Then, we sequentially introduced the ranked genes and removed redundant genes by using leave-one-out cross-validation of the chi-square test-based Direct Classifier (χ2-DC) within the training set to obtain informative genes. Finally, we determined the accuracy of independent test data by utilizing the genes obtained above withχ2-DC. Furthermore, we analyzed the robustness ofχ2-IRG-DC by comparing the generalization performance of different models, the efficiency of different feature-selection methods, and the accuracy of different classifiers. An independent test of ten multiclass tumor gene-expression datasets showed thatχ2-IRG-DC could efficiently control overfitting and had higher generalization performance. The informative genes selected byχ2-IRG-DC could dramatically improve the independent test precision of other classifiers; meanwhile, the informative genes selected by other feature selection methods also had good performance inχ2-DC.


ICANN ’94 ◽  
1994 ◽  
pp. 717-720
Author(s):  
Ryotaro Kamimura ◽  
Shohachiro Nakanishi

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245344
Author(s):  
Jianye Zhou ◽  
Yuewen Jiang ◽  
Biqing Huang

Background Outbreaks of infectious diseases would cause great losses to the human society. Source identification in networks has drawn considerable interest in order to understand and control the infectious disease propagation processes. Unsatisfactory accuracy and high time complexity are major obstacles to practical applications under various real-world situations for existing source identification algorithms. Methods This study attempts to measure the possibility for nodes to become the infection source through label ranking. A unified Label Ranking framework for source identification with complete observation and snapshot is proposed. Firstly, a basic label ranking algorithm with complete observation of the network considering both infected and uninfected nodes is designed. Our inferred infection source node with the highest label ranking tends to have more infected nodes surrounding it, which makes it likely to be in the center of infection subgraph and far from the uninfected frontier. A two-stage algorithm for source identification via semi-supervised learning and label ranking is further proposed to address the source identification issue with snapshot. Results Extensive experiments are conducted on both synthetic and real-world network datasets. It turns out that the proposed label ranking algorithms are capable of identifying the propagation source under different situations fairly accurately with acceptable computational complexity without knowing the underlying model of infection propagation. Conclusions The effectiveness and efficiency of the label ranking algorithms proposed in this study make them be of practical value for infection source identification.


Sign in / Sign up

Export Citation Format

Share Document