Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting

2019 ◽  
Vol 45 ◽  
pp. 255-261 ◽  
Author(s):  
O.O. Salman ◽  
F. Brenne ◽  
T. Niendorf ◽  
J. Eckert ◽  
K.G. Prashanth ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1821 ◽  
Author(s):  
Di Wang ◽  
Shibiao Wu ◽  
Yongqiang Yang ◽  
Wenhao Dou ◽  
Shishi Deng ◽  
...  

The laser scanning strategy has an important influence on the surface quality, residual stress, and deformation of the molten metal (deformation behavior). A divisional scanning strategy is an effective means used to reduce the internal stress of the selective laser melting (SLM) metal part. In order to understand and optimize the divisional scanning strategy, three divisional scanning strategies and an S-shaped orthogonal scanning strategy are used to produce 316L steel parts in this study. The influence of scanning strategy on the produced parts is verified from the aspects of densification, residual stress distribution and deformation. Experiments show that the 316L steel alloy parts adopted spiral divisional scanning strategy can not only obtain the densification of 99.37%, but they also effectively improve the distribution of residual stress and control the deformation degree of the produced parts. Among them, the spiral divisional scanning sample has the smallest residual stress in plane direction, and its σx and σy stress are controlled within 204 MPa and 103 MPa. The above results show that the spiral divisional scanning is the most conducive strategy to obtain higher residual stress performance of SLM 316L steel parts.


2019 ◽  
Vol 801 ◽  
pp. 270-275 ◽  
Author(s):  
Sheng Huang ◽  
Swee Leong Sing ◽  
Wai Yee Yeong

Ti-Nb based alloys have the potential to be used as structural implant materials due to their excellent bio-compatibility and ability to reduce stress shielding. The idea to additively manufacture Ti-Nb based alloys using selective laser melting (SLM) technology can further improve the resultant implant quality. However, the lack of economically sound and readily available pre-alloyed powder has pushed for the usage of composite powder as a means to hasten research pace in fabricating new alloy systems via SLM. The usage of Ti-Nb composite powder can lead to several problems, particularly the issue of macro-segregation. Hence, this paper presents the potential of laser re-melting scanning strategy to address macro-segregation without sacrificing (or even improving) density of parts fabricated by SLM.


Sign in / Sign up

Export Citation Format

Share Document