scholarly journals Presence of multidrug resistant bacteria on mobile phones of healthcare workers accelerates the spread of nosocomial infections and regarded as a threat to public health in Bangladesh

Author(s):  
Tonmoy Debnath ◽  
Shukanta Bhowmik ◽  
Tarequl Islam ◽  
Mohammed Mehadi Hassan Chowdhury
2012 ◽  
Vol 40 (4) ◽  
pp. 1045-1051 ◽  
Author(s):  
Daniel J. Morgan ◽  
Elizabeth Rogawski ◽  
Kerri A. Thom ◽  
J. Kristie Johnson ◽  
Eli N. Perencevich ◽  
...  

2018 ◽  
Vol 120 (6) ◽  
pp. 1358-1365
Author(s):  
Muhammad Hussnain Siddique ◽  
Muhammad Usman Qamar ◽  
Sumreen Hayat ◽  
Bilal Aslam ◽  
Habibullah Nadeem ◽  
...  

Purpose The purpose of this paper is to evaluate the prevalence and antibiograms of bacteria isolated from various fresh fruit juices at a local market in Faisalabad. Design/methodology/approach Fresh fruit juice samples (n=125) were randomly collected using aseptic technique. Each sample (10 mL) was serially diluted with 90 mL of sterile peptone water, from 1×10−1 to 1×10−5. Each dilution was then used to inoculate nutrient agar by surface spread plating. Aerobic colony counts (ACCs) were determined by colony counting. The isolates were sub-cultured on blood and MacConkey agar. Preliminary identification was achieved on the basis of colony morphology and culture characteristic, and confirmed by API® 20E, 20NE, and API® Staph testing. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer disk diffusion assay, per CLSI 2015 guidelines. Findings The mean ACC ranged from 2.0×106 CFU/mL to 4.93×106 CFU/mL, with the highest ACC determined for orange juice. Overall, 153 polymicrobial were identified in 125 samples; 103 of these were Gram-negative rods (GNR) and 28 were Gram-positive cocci (GPC). Escherichia coli (n=38), Klebsiella pneumoniae (n=32) and Pseudomonas aeruginosa (n=24) were the predominant GNR; Staphylococcus aureus (n=28) was the predominant GPC. Antibiogram analysis revealed that all GNR were resistant to ampicillin. However, most E. coli isolates were resistant to ceftazidime (72.4 percent of isolates), and ceftriaxone and cefepime (68.9 percent), while most K. pneumoniae isolates were resistant to cefepime (72 percent) and ceftriaxone (64 percent). All S. aureus isolates were resistant to penicillin, while most (64 percent) were resistant to piperacillin; the most effective drugs against bacteria were vancomycin and imipenem. Practical implications The findings suggest that the local government regulatory food and public health authorities should take immediate emergency measures. Appropriate surveillance studies and periodic monitoring of food items should be regularly performed to safeguard public health. Originality/value The current study revealed the prevalence of multidrug-resistant bacteria in freshly prepared fruit juices sold by local street vendors.


2006 ◽  
Vol 28 (4) ◽  
pp. 366-369 ◽  
Author(s):  
Hatem Kallel ◽  
Mabrouk Bahloul ◽  
Leila Hergafi ◽  
Malek Akrout ◽  
Wajdi Ketata ◽  
...  

2021 ◽  
Author(s):  
Tusabe Fred

Abstract Background Hospital and Community-acquired infections are escalating and pose significant public health unhealthiness worldwide. The advancements of telemedicine and automation of healthcare records are supported by cellphones, laptops and wearable devices. This study focused on the incidence of healthcare workers’ mobile phones becoming contaminated with pathogenic bacteria and their possible roles as vehicles of transmission of antimicrobial-resistant bacteria.Method: A case study at two referral hospitals in Uganda between May and October 2020. Self-administered questionnaires were administered to participants after informed consent. Mobile phones of the participants in different departments of the hospitals were swabbed and samples were collected and transported to the microbiology laboratory for bacterial culture and antimicrobial susceptibility tests. Results: The point prevalence of Healthcare workers’ mobile phone bacterial contamination with one or more species was 93%. Organisms isolated were E. coli 5.6% (1), Micrococcus spp 11.1% (2), Coagulase-negative staphylococci, CoNS, 61.1% (11) and Bacillus spp 22.2% (4). About 45% of the organisms were multidrug-resistant. Resistance was major to penicillin, cotrimoxazole, ciprofloxacin and Gentamycin respectively. The isolated E. coli was resistant to all antibiotics used in the study. Only 15% (2) of the participants disinfected their phones at least once a week and 8% cleaned their hands after using a mobile phone.Conclusion: Healthcare Workers’ mobile phones can act as fomites for the transmission of multidrug-resistant micro-organisms. This study provides strong evidence for developing and strengthening disinfection protocols for mobile phones and does not underscore the importance of hand hygiene in the middle of a patient encounter especially when the HCW grabs a phone but doesn't re-clean their hands before patient contact.


2021 ◽  
Vol 193 (11) ◽  
Author(s):  
Leila Lúcia Dias ◽  
Rafael Nakamura-Silva ◽  
Gilberto André Teles de Oliveira Junior ◽  
Ivan Orlando Gonzales Mego ◽  
Guilherme Silva Mendonça ◽  
...  

2021 ◽  
Vol 7 (8) ◽  
pp. 112
Author(s):  
Lingchao Xiang ◽  
Ozioma Udochukwu Akakuru ◽  
Chen Xu ◽  
Aiguo Wu

Infections caused by pathogenic bacteria, especially multidrug-resistant bacteria, have become a serious worldwide public health problem. Early diagnosis and treatment can effectively prevent the adverse effects of such infections. Therefore, there is an urgent need to develop effective methods for the early detection, prevention, and treatment of diseases that are caused by bacterial infections. So far, magnetic material nanoparticles (MNPs) have been widely used in the detection and treatment of bacterial infections as detection agents and therapeutics. Therefore, this review describes the recent research on MNPs in bacterial detection and treatment. Finally, a brief discussion of challenges and perspectives in this field is provided, which is expected to guide the further development of MNPs for bacterial detection and treatment.


2020 ◽  
Author(s):  
Ai-Min Jiang ◽  
Xin Shi ◽  
Na Liu ◽  
Huan Gao ◽  
Meng-Di Ren ◽  
...  

Abstract Background: Bacterial infections are the most frequent complications in patients with malignancy, and the epidemiology of nosocomial infections among cancer patients has changed over time. This study aimed to evaluate characteristics, antibiotic-resistant patterns, and prognosis of nosocomial infections caused by multidrug-resistant bacteria (MDR) in cancer patients. Methods: This retrospectively analyzed cancer patients with MDR bacteria caused nosocomial infections from August 2013 to May 2019 and was conducted to explore the risk factors, clinical features, outcomes, and antibiotic-resistant patterns of these infections. Results: Overall, 257 cancer patients developed nosocomial infections caused by MDR bacteria. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae was the most frequently isolated multidrug-resistant Gram-negative bacteria (MDRGNB), followed by ESBL-producing Klebsiella pneumonia, and Acinetobacter baumannii. Cancer patients with liver disease, received intrapleural/abdominal infusion within 30 days, length of hospitalization, hemoglobin, and albumin were independent factors for 30-day mortality in the study population. The isolated MDR bacteria were highly sensitive to amikacin, meropenem, imipenem, tigecycline, and piperacillin/tazobactam. Conclusions: Cancer patients with prolonged hospitalization was an independent predictor of a favorable outcome. However, cancer patients with liver disease, received intrapleural/abdominal infusion within 30 days, anemia, and hypoproteinemia were independent risk factors of 30-day mortality.


Sign in / Sign up

Export Citation Format

Share Document