scholarly journals Harnessing the Intriguing Properties of Magnetic Nanoparticles to Detect and Treat Bacterial Infections

2021 ◽  
Vol 7 (8) ◽  
pp. 112
Author(s):  
Lingchao Xiang ◽  
Ozioma Udochukwu Akakuru ◽  
Chen Xu ◽  
Aiguo Wu

Infections caused by pathogenic bacteria, especially multidrug-resistant bacteria, have become a serious worldwide public health problem. Early diagnosis and treatment can effectively prevent the adverse effects of such infections. Therefore, there is an urgent need to develop effective methods for the early detection, prevention, and treatment of diseases that are caused by bacterial infections. So far, magnetic material nanoparticles (MNPs) have been widely used in the detection and treatment of bacterial infections as detection agents and therapeutics. Therefore, this review describes the recent research on MNPs in bacterial detection and treatment. Finally, a brief discussion of challenges and perspectives in this field is provided, which is expected to guide the further development of MNPs for bacterial detection and treatment.

2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Dingming Guo ◽  
Jingchao Chen ◽  
Xueyang Zhao ◽  
Yanan Luo ◽  
Menglu Jin ◽  
...  

Along with the excessive use of antibiotics, the emergence and spread of multidrug-resistant bacteria has become a public health problem and a great challenge vis-à-vis the control and treatment of bacterial infections. As the natural predators of bacteria, phages have reattracted researchers’ attentions. Phage therapy is regarded as one of the most promising alternative strategies to fight pathogens in the post-antibiotic era. Recently, genetic and chemical engineering methods have been applied in phage modification. Among them, genetic engineering includes the expression of toxin proteins, modification of host recognition receptors, and interference of bacterial phage-resistant pathways. Chemical engineering, meanwhile, involves crosslinking phage coats with antibiotics, antimicrobial peptides, heavy metal ions, and photothermic matters. Those advances greatly expand the host range of phages and increase their bactericidal efficiency, which sheds light on the application of phage therapy in the control of multidrug-resistant pathogens. This review reports on engineered phages through genetic and chemical approaches. Further, we present the obstacles that this novel antimicrobial has incurred.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Oumer Abdu Muhie

Background. In the last decades, medicines have had an unprecedented positive effect on health, leading to reduced mortality and disease burden and consequently to an improved quality of life. The rapid and ongoing spread of antimicrobial-resistant organisms threatens our ability to successfully treat a growing number of infectious diseases. In the absence of the development of new generations of antibiotic drugs, appropriate use of existing antibiotics is needed to ensure the long-term availability of effective treatment for bacterial infections. Irrational use of antibiotics is an ongoing global public health problem that deserves more attention. This review is conducted to evaluate the prevalence of inappropriate antibiotic utilization and resistance to antibiotics in Ethiopia. Methods. Electronic search in PubMed/MEDLINE and Google was used to find published literature with reference lists of relevant articles searched manually. Titles and abstracts were initially screened for eligibility. The full texts of articles judged to be eligible were reviewed if they meet the inclusion criteria. Data were extracted on important variables like the sample size, region of the study, the inappropriate antibiotic use, bacterial detection rate, multidrug resistance pattern, and more other variables. Microsoft Excel was used for data extraction. Quantitative analysis was performed using STATA version 11. Results. The electronic searches identified 193 articles of which 33 were found eligible. The random-effects model was used to provide point estimates (with 95% confidence interval (CI)) of bacterial detection rate, inappropriate antibiotic use, and multidrug resistance rate to account for heterogeneity. The pooled bacteria detection rate was 29.1 with 95% CI (16.6–41.7). The pooled prevalence of multidrug resistant strains identified was 59.7% (95% CI: 43.5–75.9). The pooled estimate of inappropriate antibiotic use was 49.2% (95% CI: 32.2–66.2). The pooled proportion of self-antibiotic prescription was 43.3% (95% CI: 15.7–70.9). Other reasons for inappropriate antibiotic use included a wrong indication, wrong duration, improper route of administration, use of leftover antibiotics from a family member, and immature discontinuation of antibiotics. Conclusion and Recommendations. Inappropriate antibiotic use is a huge problem in Ethiopia, and many bacteria were resistant to commonly used antibiotics and similarly, multidrug-resistant bacterial strains are numerous. Appropriate antibiotic use should be ensured by prohibiting over-the-counter sale of antibiotics and strengthening antimicrobial stewardship.


2018 ◽  
Vol 120 (6) ◽  
pp. 1358-1365
Author(s):  
Muhammad Hussnain Siddique ◽  
Muhammad Usman Qamar ◽  
Sumreen Hayat ◽  
Bilal Aslam ◽  
Habibullah Nadeem ◽  
...  

Purpose The purpose of this paper is to evaluate the prevalence and antibiograms of bacteria isolated from various fresh fruit juices at a local market in Faisalabad. Design/methodology/approach Fresh fruit juice samples (n=125) were randomly collected using aseptic technique. Each sample (10 mL) was serially diluted with 90 mL of sterile peptone water, from 1×10−1 to 1×10−5. Each dilution was then used to inoculate nutrient agar by surface spread plating. Aerobic colony counts (ACCs) were determined by colony counting. The isolates were sub-cultured on blood and MacConkey agar. Preliminary identification was achieved on the basis of colony morphology and culture characteristic, and confirmed by API® 20E, 20NE, and API® Staph testing. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer disk diffusion assay, per CLSI 2015 guidelines. Findings The mean ACC ranged from 2.0×106 CFU/mL to 4.93×106 CFU/mL, with the highest ACC determined for orange juice. Overall, 153 polymicrobial were identified in 125 samples; 103 of these were Gram-negative rods (GNR) and 28 were Gram-positive cocci (GPC). Escherichia coli (n=38), Klebsiella pneumoniae (n=32) and Pseudomonas aeruginosa (n=24) were the predominant GNR; Staphylococcus aureus (n=28) was the predominant GPC. Antibiogram analysis revealed that all GNR were resistant to ampicillin. However, most E. coli isolates were resistant to ceftazidime (72.4 percent of isolates), and ceftriaxone and cefepime (68.9 percent), while most K. pneumoniae isolates were resistant to cefepime (72 percent) and ceftriaxone (64 percent). All S. aureus isolates were resistant to penicillin, while most (64 percent) were resistant to piperacillin; the most effective drugs against bacteria were vancomycin and imipenem. Practical implications The findings suggest that the local government regulatory food and public health authorities should take immediate emergency measures. Appropriate surveillance studies and periodic monitoring of food items should be regularly performed to safeguard public health. Originality/value The current study revealed the prevalence of multidrug-resistant bacteria in freshly prepared fruit juices sold by local street vendors.


Author(s):  
Johanna M. Vanegas ◽  
Lorena Salazar-Ospina ◽  
Gustavo A. Roncancio ◽  
Julián Builes ◽  
Judy Natalia Jiménez

ABSTRACT The emergence of resistance mechanisms not only limits the therapeutic options for common bacterial infections but also worsens the prognosis in patients who have conditions that increase the risk of bacterial infections. Thus, the effectiveness of important medical advances that seek to improve the quality of life of patients with chronic diseases is threatened. We report the simultaneous colonization and bacteremia by multidrug-resistant bacteria in two hemodialysis patients. The first patient was colonized by carbapenem- and colistin-resistant Klebsiella pneumoniae, carbapenem-resistant Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA). The patient had a bacteremia by MRSA, and molecular typing methods confirmed the colonizing isolate was the same strain that caused infection. The second case is of a patient colonized by extended-spectrum beta-lactamases (ESBL)-producing Escherichia coli and carbapenem-resistant Pseudomonas aeruginosa. During the follow-up period, the patient presented three episodes of bacteremia, one of these caused by ESBL-producing E. coli. Molecular methods confirmed colonization by the same clone of ESBL-producing E. coli at two time points, but with a different genetic pattern to the strain isolated from the blood culture. Colonization by multidrug-resistant bacteria allows not only the spread of these microorganisms, but also increases the subsequent risk of infections with limited treatments options. In addition to infection control measures, it is important to establish policies for the prudent use of antibiotics in dialysis units.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2348
Author(s):  
Mohammed Mijbas Mohammed Alomari ◽  
Marta Dec ◽  
Renata Urban-Chmiel

The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document