scholarly journals A Novel Two-domain Architecture Within the Amino Acid Kinase Enzyme Family Revealed by the Crystal Structure of Escherichia coli Glutamate 5-kinase

2007 ◽  
Vol 367 (5) ◽  
pp. 1431-1446 ◽  
Author(s):  
Clara Marco-Marín ◽  
Fernando Gil-Ortiz ◽  
Isabel Pérez-Arellano ◽  
Javier Cervera ◽  
Ignacio Fita ◽  
...  
2021 ◽  
Vol 77 (5) ◽  
pp. 618-627
Author(s):  
Pil-Won Seo ◽  
Suk-Youl Park ◽  
Andreas Hofmann ◽  
Jeong-Sun Kim

Peptidoglycan comprises repeating units of N-acetylmuramic acid, N-acetylglucosamine and short cross-linking peptides. After the conversion of UDP-N-acetylglucosamine (UNAG) to UDP-N-acetylmuramic acid (UNAM) by the MurA and MurB enzymes, an amino acid is added to UNAM by UDP-N-acetylmuramic acid L-alanine ligase (MurC). As peptidoglycan is an essential component of the bacterial cell wall, the enzymes involved in its biosynthesis represent promising targets for the development of novel antibacterial drugs. Here, the crystal structure of Mycobacterium bovis MurC (MbMurC) is reported, which exhibits a three-domain architecture for the binding of UNAM, ATP and an amino acid as substrates, with a nickel ion at the domain interface. The ATP-binding loop adopts a conformation that is not seen in other MurCs. In the UNAG-bound structure of MbMurC, the substrate mimic interacts with the UDP-binding domain of MbMurC, which does not invoke rearrangement of the three domains. Interestingly, the glycine-rich loop of the UDP-binding domain of MbMurC interacts through hydrogen bonds with the glucose moiety of the ligand, but not with the pyrophosphate moiety. These findings suggest that UNAG analogs might serve as potential candidates for neutralizing the catalytic activity of bacterial MurC.


2016 ◽  
Vol 72 (9) ◽  
pp. 1049-1061 ◽  
Author(s):  
Maria Rutkiewicz-Krotewicz ◽  
Agnieszka J. Pietrzyk-Brzezinska ◽  
Bartosz Sekula ◽  
Hubert Cieśliński ◽  
Anna Wierzbicka-Woś ◽  
...  

The crystal structure of a novel dimeric β-D-galactosidase fromParacoccussp. 32d (ParβDG) was solved in space groupP212121at a resolution of 2.4 Å by molecular replacement with multiple models using theBALBESsoftware. This enzyme belongs to glycoside hydrolase family 2 (GH2), similar to the tetrameric and hexameric β-D-galactosidases fromEscherichia coliandArthrobactersp. C2-2, respectively. It is the second known structure of a cold-active GH2 β-galactosidase, and the first in the form of a functional dimer, which is also present in the asymmetric unit. Cold-adapted β-D-galactosidases have been the focus of extensive research owing to their utility in a variety of industrial technologies. One of their most appealing applications is in the hydrolysis of lactose, which not only results in the production of lactose-free dairy, but also eliminates the `sandy effect' and increases the sweetness of the product, thus enhancing its quality. The determined crystal structure represents the five-domain architecture of the enzyme, with its active site located in close vicinity to the dimer interface. To identify the amino-acid residues involved in the catalytic reaction and to obtain a better understanding of the mechanism of action of this atypical β-D-galactosidase, the crystal structure in complex with galactose (ParβDG–Gal) was also determined. The catalytic site of the enzyme is created by amino-acid residues from the central domain 3 and from domain 4 of an adjacent monomer. The crystal structure of this dimeric β-D-galactosidase reveals significant differences in comparison to other β-galactosidases. The largest difference is in the fifth domain, named Bgal_windup domain 5 inParβDG, which contributes to stabilization of the functional dimer. The location of this domain 5, which is unique in size and structure, may be one of the factors responsible for the creation of a functional dimer and cold-adaptation of this enzyme.


2004 ◽  
Vol 186 (21) ◽  
pp. 7134-7140 ◽  
Author(s):  
Alexey Teplyakov ◽  
Galina Obmolova ◽  
Elif Sarikaya ◽  
Sadhana Pullalarevu ◽  
Wojciech Krajewski ◽  
...  

ABSTRACT The ygfZ gene product of Escherichia coli represents a large protein family conserved in bacteria to eukaryotes. The members of this family are uncharacterized proteins with marginal sequence similarity to the T-protein (aminomethyltransferase) of the glycine cleavage system. To assist with the functional assignment of the YgfZ family, the crystal structure of the E. coli protein was determined by multiwavelength anomalous diffraction. The protein molecule has a three-domain architecture with a central hydrophobic channel. The structure is very similar to that of bacterial dimethylglycine oxidase, an enzyme of the glycine betaine pathway and a homolog of the T-protein. Based on structural superposition, a folate-binding site was identified in the central channel of YgfZ, and the ability of YgfZ to bind folate derivatives was confirmed experimentally. However, in contrast to dimethylglycine oxidase and T-protein, the YgfZ family lacks amino acid conservation at the folate site, which implies that YgfZ is not an aminomethyltransferase but is likely a folate-dependent regulatory protein involved in one-carbon metabolism.


1999 ◽  
Vol 55 (8) ◽  
pp. 1474-1477 ◽  
Author(s):  
Tzu-Ping Ko ◽  
Szu-Pei Wu ◽  
Wei-Zen Yang ◽  
Hsin Tsai ◽  
Hanna S. Yuan

Tyrosine aminotransferase catalyzes transamination for both dicarboxylic and aromatic amino-acid substrates. The substrate-free Escherichia coli tyrosine aminotransferase (eTAT) bound with the cofactor pyridoxal 5′-phosphate (PLP) was crystallized in the trigonal space group P32. A low-resolution crystal structure of eTAT was determined by molecular-replacement methods. The overall folding of eTAT resembles that of the aspartate aminotransferases, with the two identical subunits forming a dimer in which each monomer binds a PLP molecule via a covalent bond linked to the ∊-NH2 group of Lys258. Comparison of the structure of eTAT with those of the open, half-open or closed form of chicken or E. coli aspartate aminotransferases shows the eTAT structure to be in the open conformation.


2017 ◽  
Vol 24 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Yinliang Ma ◽  
Guohui Bai ◽  
Yaqi Cui ◽  
Jing Zhao ◽  
Zenglin Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document