scholarly journals Modelling the failure precursor mechanism of lamellar fibrous tissues, example of the annulus fibrosus

Author(s):  
Marlène Mengoni ◽  
Alison C. Jones ◽  
Ruth K. Wilcox
Author(s):  
Brendon M. Baker ◽  
Grace D. O’Connell ◽  
Sounok Sen ◽  
Ashwin S. Nathan ◽  
Dawn M. Elliott ◽  
...  

The architecture of load-bearing fibrous tissues is optimized to enable a specific set of mechanical functions. This organization arises from a complex process of cell patterning, matrix deposition, and functional maturation [1]. In their mature state, these tissues span multiple length scales, encompassing nanoscale interactions of cells with extracellular matrix to the centimeter length scales of the anatomic tissue volume and shape. Two structures that typify dense fibrous tissues are the meniscus of the knee and the annulus fibrosus (AF) of the intervertebral disc (IVD). The mechanical function of the wedge-shaped knee meniscus is based on its stiff prevailing circumferential collagen architecture that resists tensile deformation [2,3]. Adding to its complexity, radial tie fibers and sheets are interwoven amongst these fibers, increasing stiffness in the transverse direction and binding the tissue together [4]. In the annulus fibrosus, multiple anisotropic lamellae are stacked in concentric rings with their prevailing fiber directions alternating above and below the horizontal axis in adjacent layers [5]. The high circumferential tensile properties of this laminate structure allow it to resist bulging of the nucleus pulposus with compressive loading of the spine. Given their structural properties, unique form, and demanding mechanical environments, the knee meniscus and the AF region of the IVD represent two of the most challenging tissues to consider for functional tissue engineering.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Beibei Zu ◽  
Lin Liu ◽  
Jingya Wang ◽  
Meirong Li ◽  
Junxia Yang

Abstract Background Synovial fibroblasts (SFs) with the abnormal expressions of miRNAs are the key regulator in rheumatoid arthritis (RA). Low-expressed miR-140-3p was found in RA tissues. Therefore, we attempted to investigate the effect of miR-140-3p on SFs of RA. Methods RA and normal synovial fibrous tissue were gathered. The targets of miR-140-3p were found by bioinformatics and luciferase analysis. Correlation between the expressions of miR-140-3p with sirtuin 3 (SIRT3) was analyzed by Pearson correlation analysis. After transfection, cell viability and apoptosis were detected by cell counting kit-8 and flow cytometry. The expressions of miR-140-3p, SIRT3, Ki67, Bcl-2, Bax, and cleaved Caspase-3 were detected by RT-qPCR or western blot. Results Low expression of miR-140-3p and high expression of SIRT3 were found in RA synovial fibrous tissues. SIRT3 was a target of miR-140-3p. SIRT3 expression was negatively correlated to the expression of miR-140-3p. MiR-140-3p mimic inhibited the MH7A cell viability and the expressions of SIRT3, Ki67, and Bcl-2 and promoted the cell apoptosis and the expressions of Bax and cleaved Caspase-3; miR-140-3p inhibitor showed an opposite effect to miR-140-3p mimic on MH7A cells. SIRT3 overexpression not only promoted the cell viability and inhibited cell apoptosis of MH7A cells but also reversed the effect of miR-140-3p mimic had on MH7A cells. Conclusions The results in this study revealed that miR-140-3p could inhibit cell viability and promote apoptosis of SFs in RA through targeting SIRT3.


2017 ◽  
Vol 61 ◽  
pp. 88-93 ◽  
Author(s):  
Xin Gao ◽  
Qiaoqiao Zhu ◽  
Weiyong Gu

2021 ◽  
Vol 22 (9) ◽  
pp. 4415
Author(s):  
Anthony J. Hayes ◽  
James Melrose

The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.


2021 ◽  
pp. 100077
Author(s):  
Audrey McAlinden ◽  
David M. Hudson ◽  
Aysel A. Fernandes ◽  
Soumya Ravindran ◽  
Russell J. Fernandes

JOR Spine ◽  
2021 ◽  
Author(s):  
Xiangjiang Wang ◽  
Rahul Gawri ◽  
Changbin Lei ◽  
Joon Lee ◽  
Gwendolyn Sowa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document