scholarly journals Non-enzymatic glycation of annulus fibrosus alters tissue-level failure mechanics in tension

Author(s):  
Benjamin Werbner ◽  
Matthew Lee ◽  
Allan Lee ◽  
Linda Yang ◽  
Mohamed Habib ◽  
...  
Author(s):  
Benjamin C. Gadomski ◽  
John Rasmussen ◽  
Christian M. Puttlitz

The human spine experiences complex loading in vivo; however, simplifications to these loading conditions are commonly made in computational and experimental protocols. Pure moments are often used in cadaveric preparations to replicate in vivo loading conditions, and previous studies have shown this method adequately predicts range of motion behavior (1, 2). It is unclear what effect pure moment loading has on the tissue-level internal mechanical parameters such as stresses in the annulus fibrosus and facet contact parameters. Recent advances in musculoskeletal modeling have elucidated previously unknown quantities of the musculature recruitment patterns such as times, forces, and directions. The advancements are especially relevant in cases of surgical intervention because the spinal musculature has been reported to play a critical role in providing additional stability to the spine when defects such as discectomy and nucleotomy are involved (2). Thus, the aim of the study was to determine the importance of computational loading conditions on the resultant global ranges of motion, as well as the tissue-level predictions of annulus fibrosus stresses, and facet contact pressures, forces, and areas.


2019 ◽  
Vol 89 ◽  
pp. 34-39 ◽  
Author(s):  
Benjamin Werbner ◽  
Katherine Spack ◽  
Grace D. O'Connell

Author(s):  
Woojin M. Han ◽  
Nandan L. Nerurkar ◽  
Lachlan J. Smith ◽  
Nathan T. Jacobs ◽  
Robert L. Mauck ◽  
...  

The annulus fibrosus (AF) is a multi-lamellar fibrocartilagenous ring in the intervertebral disc. The variation of biochemical composition from the outer to the inner AF is largely responsible for the heterogeneous mechanical properties. In vitro tissue-level studies require mechanical testing in aqueous buffers to avoid tissue dehydration. The varying glycosaminoglycan (GAG) contents from outer to inner AF suggest that the response to high and low PBS osmolarity may also be different with radial position. Previous studies in tendon and ligament have been conflicting: soaking tendon fascicles in PBS decreased tensile modulus1 and treating ligament in buffer had no effect on modulus.2


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Benjamin Werbner ◽  
Minhao Zhou ◽  
Grace O'Connell

Tears in the annulus fibrosus (AF) of the intervertebral disk can result in disk herniation and progressive degeneration. Understanding AF failure mechanics is important as research moves toward developing biological repair strategies for herniated disks. Unfortunately, failure mechanics of fiber-reinforced tissues, particularly tissues with fibers oriented off-axis from the applied load, is not well understood, partly due to the high variability in reported mechanical properties and a lack of standard techniques ensuring repeatable failure behavior. Therefore, the objective of this study was to investigate the effectiveness of midlength (ML) notch geometries in producing repeatable and consistent tissue failure within the gauge region of AF mechanical test specimens. Finite element models (FEMs) representing several notch geometries were created to predict the location of bulk tissue failure using a local strain-based criterion. FEM results were validated by experimentally testing a subset of the modeled specimen geometries. Mechanical testing data agreed with model predictions (∼90% agreement), validating the model's predictive power. Two of the modified dog-bone geometries (“half” and “quarter”) effectively ensured tissue failure at the ML for specimens oriented along the circumferential-radial and circumferential-axial directions. The variance of measured mechanical properties was significantly lower for notched samples that failed at the ML, suggesting that ML notch geometries result in more consistent and reliable data. In addition, the approach developed in this study provides a framework for evaluating failure properties of other fiber-reinforced tissues, such as tendons and meniscus.


Author(s):  
Woojin M. Han ◽  
Su-Jin Heo ◽  
Tristan P. Driscoll ◽  
Robert L. Mauck ◽  
Dawn M. Elliott

Mechanical signals influence cell viability, differentiation, proliferation, and extracellular matrix (ECM) production in load-bearing tissues. However, the current understanding of how macroscopic tissue level strain is transferred to cells is confounded by the highly variable strain fields that arise within the ECM of these tissues. In tendon and outer annulus fibrosus (AF), microscale strains in the ECM can be significantly lower than the applied strains.1,2,3 In meniscus, both strain amplification and attenuation were observed at the microscale level.4


Sign in / Sign up

Export Citation Format

Share Document