In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation

2017 ◽  
Vol 75 ◽  
pp. 347-354 ◽  
Author(s):  
Xiuqing Zhang ◽  
Ting Liu ◽  
Xiaohui Fan ◽  
Ni Ai
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuipu Cai ◽  
Qihui Wu ◽  
Honghai Hong ◽  
Liying He ◽  
Zhihong Liu ◽  
...  

AbstractAdvances in immunotherapy have revolutionized treatments in many types of cancer. Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant application against cancer, is emerging as an important medical resource for developing innovative cancer treatments, including immunotherapy. In this study, we developed a quantitative and systems pharmacology-based framework to identify TCM-derived natural products for cancer immunotherapy. Specifically, we integrated 381 cancer immune response-related genes and a compound-target interaction network connecting 3273 proteins and 766 natural products from 66 cancer-related herbs based on literature-mining. Via systems pharmacology-based prediction, we uncovered 182 TCM-derived natural products having potential anti-tumor immune responses effect. Importantly, 32 of the 49 most promising natural products (success rate = 65.31%) are validated by multiple evidence, including published experimental data from clinical studies, in vitro and in vivo assays. We further identified the mechanism-of-action of TCM in cancer immunotherapy using network-based functional enrichment analysis. We showcased that three typical natural products (baicalin, wogonin, and oroxylin A) in Huangqin (Scutellaria baicalensis Georgi) potentially overcome resistance of known oncology agents by regulating tumor immunosuppressive microenvironments. In summary, this study offers a novel and effective systems pharmacology infrastructure for potential cancer immunotherapeutic development by exploiting the medical wealth of natural products in TCM.


2015 ◽  
Vol 30 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Lee E. Hullender Rubin ◽  
Michael S. Opsahl ◽  
Klaus E. Wiemer ◽  
Scott D. Mist ◽  
Aaron B. Caughey

Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 532
Author(s):  
Hae-Soo Yun ◽  
Sylvatrie-Danne Dinzouna-Boutamba ◽  
Sanghyun Lee ◽  
Zin Moon ◽  
Dongmi Kwak ◽  
...  

In traditional Chinese medicine, Ranunculus japonicus has been used to treat various diseases, including malaria, and the young stem of R. japonicus is consumed as a food in the Republic of Korea. However, experimental evidence of the antimalarial effect of R. japonicus has not been evaluated. Therefore, the antimalarial activity of the extract of the young stem of R. japonicus was evaluated in vitro using both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains; in vivo activity was evaluated in Plasmodium berghei-infected mice via oral administration followed by a four-day suppressive test focused on biochemical and hematological parameters. Exposure to extracts of R. japonicus resulted in significant inhibition of both chloroquine-sensitive (3D7) and resistant (Dd2) strains of P. falciparum, with IC50 values of 6.29 ± 2.78 and 5.36 ± 4.93 μg/mL, respectively. Administration of R. japonicus also resulted in potent antimalarial activity against P. berghei in infected mice with no associated toxicity; treatment also resulted in improved hepatic, renal, and hematologic parameters. These results demonstrate the antimalarial effects of R. japonicus both in vitro and in vivo with no apparent toxicity.


2009 ◽  
Vol 27 (3-4) ◽  
pp. 419-420 ◽  
Author(s):  
Michael-Rock Goldsmith ◽  
Rogelio Tornero-Velez ◽  
Thomas R. Transue ◽  
Stephen B. Little ◽  
James R. Rabinowitz ◽  
...  

2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2354-2363 ◽  
Author(s):  
Sven Baumann ◽  
Stefanie C. Fas ◽  
Marco Giaisi ◽  
Wolfgang W. Müller ◽  
Anette Merling ◽  
...  

Herbs have successfully been used in traditional Chinese medicine for centuries. However, their curative mechanisms remain largely unknown. In this study, we show that Wogonin, derived from the traditional Chinese medicine Huang-Qin (Scutellaria baicalensis Georgi), induces apoptosis in malignant T cells in vitro and suppresses growth of human T-cell leukemia xenografts in vivo. Importantly, Wogonin shows almost no toxicity on T lymphocytes from healthy donors. Wogonin induces prolonged activation of PLCγ1 via H2O2 signaling in malignant T cells, which leads to sustained elevation of cytosolic Ca2+ in malignant but not normal T cells. Subsequently, a Ca2+ overload leads to disruption of the mitochondrial membrane. The selective effect of Wogonin is due to its differential regulation of the redox status of malignant versus normal T cells. In addition, we show that the L-type voltage-dependent Ca2+ channels are involved in the intracellular Ca2+ mobilization in T cells. Furthermore, we show that malignant T cells possess elevated amounts of voltage-dependent Ca2+ channels compared with normal T cells, which further enhance the cytotoxicity of Wogonin for malignant T cells. Taken together, our data show a therapeutic potential of Wogonin for the treatment of hematologic malignancies.


Sign in / Sign up

Export Citation Format

Share Document