1865 Preventative and Therapeutic Effects of Low-Temperature Atmospheric-Pressure Plasma in a Mouse Model of Paclitaxel-Induced Neuropathy

2019 ◽  
Vol 26 (7) ◽  
pp. S152
Author(s):  
YJ Na ◽  
HJ Yoon ◽  
HJ Lee ◽  
BS Kwon
2008 ◽  
Vol 36 (4) ◽  
pp. 970-971 ◽  
Author(s):  
Chang-Seung Ha ◽  
Joon-Young Choi ◽  
Ho-Jun Lee ◽  
Dong-Hyun Kim ◽  
Hae June Lee

2021 ◽  
Vol 6 (1) ◽  
pp. 78-86
Author(s):  
N. Yu. Moskalenko ◽  
O. A. Kudryashova ◽  
L. S. Kudryashov ◽  
S. L. Tikhonov ◽  
N. V. Tikhonova ◽  
...  

It is known that processing methods ensuring partial or full microbial inactivation are quite limited. Therefore, it is of great interest to develop technique and technologies allowing the effective action on microorganisms without a significant influence on product properties. The use of cold plasma can be one of the promising methods of meat product treatment by cold sterilization. The present work examines a possibility of chilled meat treatment with low-temperature atmospheric-pressure plasma to increase its stability to microbial spoilage and extend shelf life. To obtain low temperature plasma, the equipment developed by the designing department “Plasmamed” was used. Chilled meat was treated with low-temperature atmospheric-pressure argon plasma for 5, 10, 20 and 30 min. Samples were stored at a temperature of 2–4 °C for 10 days. Organoleptic indices, moisture weight fraction, changes in pH and water activity were analyzed before treatment and during storage. Sanitary microbiological analyses were carried out by the following indicators: quantity of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM), the presence and quantity of coliforms, Salmonella, Escherichia coli, Listeria monocytogenes, Proteus. It was shown that meat cold treatment with argon plasma inhibited the development of mesophilic microorganisms. The colony forming units detected in the samples after ten days of storage were determined by the duration of exposure to plasma. It was proved that meat treatment for 15 and 30 min had the bactericidal effect and facilitated an improvement in meat color during storage. The organoleptic indices of the samples treated with plasma corresponded to the requirements of standards and approved consumer characteristics.


2021 ◽  
pp. 32-38
Author(s):  
E.O. FILIPPOVA ◽  
◽  
N.M. IVANOVA ◽  
V.F. PICHUGIN ◽  
◽  
...  

To determine the effect of intracameral implantation of polylactic acid (PLA) films modified in low-temperature atmospheric pressure plasma on the course of in vivo-induced bullous keratopathy (BK).


2020 ◽  
Vol 10 (19) ◽  
pp. 6898
Author(s):  
Lars Boeckmann ◽  
Mirijam Schäfer ◽  
Thoralf Bernhardt ◽  
Marie Luise Semmler ◽  
Ole Jung ◽  
...  

Plasma medicine is gaining increasing attention and is moving from basic research into clinical practice. While areas of application are diverse, much research has been conducted assessing the use of cold atmospheric pressure plasma (CAP) in wound healing and cancer treatment—two applications with entirely different goals. In wound healing, a tissue-stimulating effect is intended, whereas cancer therapy aims at killing malignant cells. In this review, we provide an overview of the latest clinical and some preclinical research on the efficacy of CAP in wound healing and cancer therapy. Furthermore, we discuss the current understanding of molecular signaling mechanisms triggered by CAP that grant CAP its antiseptic and tissue regenerating or anti-proliferative and cell death-inducing properties. For the efficacy of CAP in wound healing, already substantial evidence from clinical studies is available, while evidence for therapeutic effects of CAP in oncology is mainly from in vitro and in vivo animal studies. Efforts to elucidate the mode of action of CAP suggest that different components, such as ultraviolet (UV) radiation, electromagnetic fields, and reactive species, may act synergistically, with reactive species being regarded as the major effector by modulating complex and concentration-dependent redox signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document